搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过冷水溶液中的空间光孤子

欧阳世根

引用本文:
Citation:

过冷水溶液中的空间光孤子

欧阳世根

Optical spatial solitons in supercooled aqueous solutions

Ouyang Shi-Gen
PDF
导出引用
  • 建立了在过冷水溶液中传播的光束的非局域非线性模型.过冷水的热致折射率扰动在温度扰动较小的情况下随温度增大,但在温度扰动达到一定程度后随温度减小.在求出该模型的数值孤子解后,对孤子的性态进行了研究.研究表明,在光功率较小时,过冷水表现出自聚焦的特性,而在光功率较大时,在孤子的中心区域的过冷水表现出自散焦的特性,而在孤子的外围仍表现为自聚焦.在总功率较大的情况下,孤子间的相互作用也表现出这种部分自散焦,部分自聚焦的现象.
    In recent years, nonlocal spatial solitons have attracted a great deal of attention. Optical spatial solitons result from the suppression of beam diffraction by the light-induced perturbed refractive index. For spatial nonlocal solitons, the light-induced perturbed refractive index of medium depends on the light intensity nonlocally, namely, the perturbed refractive index at a point is determined not only by the light intensity at that point but also by the light intensity in its vicinity. Such a spatial nonlocality may originate from heat transfer, like the nonlocal bright solitons in lead glass and dark solitons in liquids or gases. The perturbed refractive index n of lead glass or liquid is direct proportional to the light-induced temperature perturbation t, i.e. n=1t. The proportional coefficient 1 is positive (negative) for lead glass (liquid), and the light-induced temperature perturbation t is determined by the Poisson equation ▽2(t)=-DI, where I is the light intensity and D is a coefficient. In this paper, we investigate another type of thermal nonlinear effect, in which the perturbed refractive index n depends on the light-induced temperature perturbation t in a new way that n=1t+2(t)2. It has been indicated previously that the refractive index of a supercooled aqueous solution depends on the temperature, specifically n(t)=n0-2(t-t0)2, where n0=1.337733 for 501 nm light wave, t0=-0.1℃ and 2=310-6 K-2. So for tt0, the refractive index of aqueous solution increases with temperature rising, while tt0, it decreases with temperature increasing. In this paper, we use the numerical simulation method to investigate the propagation and interaction properties of optical solitons propagating in a supercooled aqueous solution, whose temperature on boundary is maintained at some value below t0, with the aqueous solution placed in a thermostatic chamber. Obviously, the inner temperature of the solution rises, owing to absorbing some optical energies of the light beam propagating in it, and as a consequence the inner refractive index changes according to n(t)=n0-2(t-t0)2. For a soliton with a low power, the inner temperature t of the solution is always kept below t0, so the refractive index at a point with a higher t is larger than that at another point with a lower t. In this case, the solution behaves as a self-focusing medium. A soliton with a higher power has a narrower beam width and a larger propagation constant, and the soliton takes a bell shape. However, for a soliton with a rather high power, the temperature in the core will be higher than t0 while the temperature in the periphery is still below t0. Therefore, the part of the solution in the core behaves as a self-defocusing medium while the part in the periphery behaves as a self-focusing medium. For such a case, the higher the power of the soliton, the larger the radius of the core is and the larger the beam width of the soliton, so the soliton takes a crater shape with a saturated propagation constant. Finally we also investigate the interaction between two solitons in a supercooled aqueous solution. For two neighboring beams with a rather high total power, they cannot maintain their individualities any more during the interaction, but merge into an expanding crater.
      通信作者: 欧阳世根, ouyang.shigen@163.com
    • 基金项目: 国家自然科学基金(批准号:61008007)资助的课题.
      Corresponding author: Ouyang Shi-Gen, ouyang.shigen@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61008007).
    [1]

    She W L, Lee K K, Lee W K 1999 Phys. Rev. Lett. 83 3182

    [2]

    Assanto G, Fratalocchi A, Peccianti M 2007 Optics Express 15 5248

    [3]

    Rotschild C, Cohen O, Manela O, Segev M, Carmon T 2005 Phys. Rev. Lett. 95 213904

    [4]

    Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese) [周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 物理学报 60 044208]

    [5]

    Wang J, Zheng Y Z, Zhou L H, Yang Z J, Lu D Q, Guo Q, Hu W 2012 Acta Phys. Sin. 61 084210 (in Chinese) [王婧, 郑一红, 周罗红, 杨振军, 陆大全, 郭旗, 胡巍 2012 物理学报 61 084210]

    [6]

    Vedamuthu M, Singh S, Robinson G W 1994 J. Phys. Chem. 98 2222

    [7]

    Luten D B 1934 Physical Review 45 161

    [8]

    Robinson G W, Cho C H, Gellene G I 2000 J. Phys. Chem. B 104 7179

    [9]

    Cho C H, Urquidi J, Gellene G I, Robinson G W 2001 J. Chem. Phys. 114 3157

    [10]

    Colcombe S M, Lowe R D, Snook R D 1997 Analytica Chimca Acta 356 277

    [11]

    Pope R M, Fry E S 1997 Applied Optics 36 8710

    [12]

    Benchikh O, Fournier D, Boccara A C, Teixeira J 1985 J. Physique 46 727

    [13]

    Zhao K H, Chen X M 1997 Electromagnetics (2nd Ed.) (Beijing: Pubishing House of Higher Education) pp45-69 (in Chinese) [赵凯华, 陈熙谋 1997 电磁学 (第二版) (北京: 高等教育出版社) 第4569页]

  • [1]

    She W L, Lee K K, Lee W K 1999 Phys. Rev. Lett. 83 3182

    [2]

    Assanto G, Fratalocchi A, Peccianti M 2007 Optics Express 15 5248

    [3]

    Rotschild C, Cohen O, Manela O, Segev M, Carmon T 2005 Phys. Rev. Lett. 95 213904

    [4]

    Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese) [周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 物理学报 60 044208]

    [5]

    Wang J, Zheng Y Z, Zhou L H, Yang Z J, Lu D Q, Guo Q, Hu W 2012 Acta Phys. Sin. 61 084210 (in Chinese) [王婧, 郑一红, 周罗红, 杨振军, 陆大全, 郭旗, 胡巍 2012 物理学报 61 084210]

    [6]

    Vedamuthu M, Singh S, Robinson G W 1994 J. Phys. Chem. 98 2222

    [7]

    Luten D B 1934 Physical Review 45 161

    [8]

    Robinson G W, Cho C H, Gellene G I 2000 J. Phys. Chem. B 104 7179

    [9]

    Cho C H, Urquidi J, Gellene G I, Robinson G W 2001 J. Chem. Phys. 114 3157

    [10]

    Colcombe S M, Lowe R D, Snook R D 1997 Analytica Chimca Acta 356 277

    [11]

    Pope R M, Fry E S 1997 Applied Optics 36 8710

    [12]

    Benchikh O, Fournier D, Boccara A C, Teixeira J 1985 J. Physique 46 727

    [13]

    Zhao K H, Chen X M 1997 Electromagnetics (2nd Ed.) (Beijing: Pubishing House of Higher Education) pp45-69 (in Chinese) [赵凯华, 陈熙谋 1997 电磁学 (第二版) (北京: 高等教育出版社) 第4569页]

  • [1] 范海玲, 郭志坚, 李明强, 卓红斌. 等离子体中涡旋光束自聚焦与成丝现象的模拟研究. 物理学报, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [2] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法. 物理学报, 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [3] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变. 物理学报, 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [4] 陈雪琼, 陈子阳, 蒲继雄, 朱健强, 张国文. 平顶光束经表面有缺陷的厚非线性介质后的光强分布. 物理学报, 2013, 62(4): 044213. doi: 10.7498/aps.62.044213
    [5] 林峰, 谭超, 周元, 傅喜泉. 非线性介质中强光对弱光聚焦的控制研究. 物理学报, 2013, 62(14): 144208. doi: 10.7498/aps.62.144208
    [6] 欧阳世根. 自散焦非局域非线性材料中的光学涡旋孤子. 物理学报, 2013, 62(4): 040504. doi: 10.7498/aps.62.040504
    [7] 黄起森, 刘礼, 韦修勋, 李金富. 过冷Ni-P合金的凝固行为. 物理学报, 2012, 61(16): 166401. doi: 10.7498/aps.61.166401
    [8] 宋诗艳, 王晶, 王建步, 宋莎莎, 孟俊敏. 应用非线性薛定谔方程模拟深海内波的传播. 物理学报, 2010, 59(9): 6339-6344. doi: 10.7498/aps.59.6339
    [9] 郭 璐, 卫 栋, 陈海霞, 熊德智, 王鹏军, 张 靖. 铷原子热蒸气中强非线性效应产生激光模式图样的实验研究. 物理学报, 2008, 57(7): 4224-4229. doi: 10.7498/aps.57.4224
    [10] 康轶凡, 卢克清, 忽满利, 康晓辉, 张美志, 王 超, 周利斌, 陈 幸. LiNbO3晶体中光伏亮孤子实验研究. 物理学报, 2008, 57(6): 3547-3552. doi: 10.7498/aps.57.3547
    [11] 王伟民, 郑春阳. 超强短脉冲激光在不同密度分布等离子体中的自聚焦. 物理学报, 2006, 55(1): 310-320. doi: 10.7498/aps.55.310
    [12] 龚伦训. 非线性薛定谔方程的Jacobi椭圆函数解. 物理学报, 2006, 55(9): 4414-4419. doi: 10.7498/aps.55.4414
    [13] 阮航宇, 李慧军. 用推广的李群约化法求解非线性薛定谔方程. 物理学报, 2005, 54(3): 996-1001. doi: 10.7498/aps.54.996
    [14] 黄春福, 郭儒, 刘思敏, 舒强, 高垣梅, 汪大云, 刘照红, 张小华, 陆猗. 在LiNbO3:Fe晶体中暗辐照对光束从自散焦向自聚焦转换过程的影响. 物理学报, 2004, 53(5): 1367-1372. doi: 10.7498/aps.53.1367
    [15] 汪大云, 刘思敏, 陈晓虎, 赵红娥, 郭 儒, 杨立森, 高垣梅, 黄春福, 陆 猗. 非相干辐照对LiNbO3:Fe晶体光折变非线性的影响与控制作用. 物理学报, 2003, 52(2): 395-400. doi: 10.7498/aps.52.395
    [16] 刘思敏, 汪大云, 赵红娥, 李祖斌, 郭儒, 陆猗, 黄春福, 高垣梅. 从自散焦到自聚焦的动态转换和相位共轭亮空间孤子. 物理学报, 2002, 51(12): 2761-2766. doi: 10.7498/aps.51.2761
    [17] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
    [18] 阮航宇, 陈一新. (2+1)维非线性薛定谔方程的环孤子,dromion,呼吸子和瞬子. 物理学报, 2001, 50(4): 586-592. doi: 10.7498/aps.50.586
    [19] 江瑛, 刘思敏, 温海东, 张心正, 郭儒, 陈晓虎, 许京军, 张光寅. 光生伏打LiNbO3:Fe晶体从自散焦到等效“自聚焦”的动态转换. 物理学报, 2001, 50(3): 483-488. doi: 10.7498/aps.50.483
    [20] 方光宇, 宋瑛林, 王玉晓, 张学如, 曲士良, 李淳飞, 宋礼成, 胡青眉, 刘鹏程. 富勒烯衍生物中的自散焦、自聚焦及其相互转化. 物理学报, 2000, 49(8): 1499-1502. doi: 10.7498/aps.49.1499
计量
  • 文章访问数:  5984
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-01-09
  • 刊出日期:  2017-05-05

/

返回文章
返回