搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定分数阶时滞混沌系统自适应神经网络同步控制

林飞飞 曾喆昭

引用本文:
Citation:

不确定分数阶时滞混沌系统自适应神经网络同步控制

林飞飞, 曾喆昭

Synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive neural network control

Lin Fei-Fei, Zeng Zhe-Zhao
PDF
导出引用
  • 针对带有完全未知的非线性不确定项和外界扰动的异结构分数阶时滞混沌系统的同步问题,基于Lyapunov稳定性理论,设计了自适应径向基函数(radial basis function,RBF)神经网络控制器以及整数阶的参数自适应律.该控制器结合了RBF神经网络和自适应控制技术,RBF神经网络用来逼近未知非线性函数,自适应律用于调整控制器中相应的参数.构造平方Lyapunov函数进行稳定性分析,基于Barbalat引理证明了同步误差渐近趋于零.数值仿真结果表明了该控制器的有效性.
    Time delay frequently appears in many phenomena of real life and the presence of time delay in a chaotic system leads to its complexity. It is of great practical significance to study the synchronization control of fractional-order chaotic systems with time delay. This is because it is closer to the real life and its dynamical behavior is more complex. However, the chaotic system is usually uncertain or unknown, and may also be affected by external disturbances, which cannot make the ideal model accurately describe the actual system. Moreover, in most of existing researches, they are difficult to realize the synchronization control of fractional-order time delay chaotic systems with unknown terms. In this paper, for the synchronization problems of the different structural fractional-order time delay chaotic systems with completely unknown nonlinear uncertain terms and external disturbances, based on Lyapunov stability theory, an adaptive radial basis function (RBF) neural network controller, which is accompanied by integer-order adaptive laws of parameters, is established. The controller combines RBF neural network and adaptive control technology, the RBF neural network is employed to approximate the unknown nonlinear functions, and the adaptive laws are used to adjust corresponding parameters of the controller. The system stability is analyzed by constructing a quadratic Lyapunov function. This method not only avoids the fractional derivative of the quadratic Lyapunov function, but also ensures that the adaptive laws are integer-order. Based on Barbalat lemma, it is proved that the synchronization error tends to zero asymptotically. In the numerical simulation, the uncertain fractional-order Liu chaotic system with time delay is chosen as the driving system, and the uncertain fractional-order Chen chaotic system with time delay is used as the response system. The simulation results show that the controller can realize the synchronization control of the different structural fractional-order chaotic systems with time delay, and has the advantages of fast response speed, good control effect, and strong anti-interference ability. From the perspective of long-term application, the synchronization of different structures has greater research significance and more development prospect than self synchronization. Therefore, the results of this study have great theoretical significance, and have a great application value in the field of secure communication.
      通信作者: 曾喆昭, 508984293@qq.com
    • 基金项目: 国家自然科学基金(批准号:61040049)、电子科学与技术湖南省重点学科和智能电网运行与控制湖南省重点实验室项目资助的课题.
      Corresponding author: Zeng Zhe-Zhao, 508984293@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61040049), the Hunan Province Key Discipline of Electronic Science and Technology, and the Foundation of Hunan Province Key Laboratory of Smart Grids Operation and Control, China.
    [1]

    Hermann R 2010 Physica A 389 4613

    [2]

    Li C L, Yu S M, Luo X S 2012 Chin. Phys. B 21 100506

    [3]

    Peterson M R, Nayak C 2014 Phys. Rev. Lett. 113 086401

    [4]

    Maione G 2013 IEEE Trans. Autom. Control 58 1579

    [5]

    Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 240504 (in Chinese) [胡建兵, 赵灵冬 2013 物理学报 62 240504]

    [6]

    Chen D Y, Zhang R F, Liu X Z, Ma X Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 4105

    [7]

    Balasubramaniam P, Muthukumar P, Ratnavelu K 2015 Nonlinear Dyn. 80 249

    [8]

    Muthukumar P, Balasubramaniam P, Ratnavelu K 2015 Nonlinear Dyn. 80 1883

    [9]

    Gao F, Li T, Tong H Q, Ou Z L 2016 Acta Phys. Sin. 65 230502 (in Chinese) [高飞, 李腾, 童恒庆, 欧卓玲 2016 物理学报 65 230502]

    [10]

    Andrew L Y T, Li X F, Chu Y D, Zhang H 2015 Chin. Phys. B 24 010502

    [11]

    Gao Y, Liang C H, Wu Q Q, Yuan H Y 2015 Chaos Soliton. Fract. 76 190

    [12]

    Khanzadeh A, Pourgholi M 2016 Chaos Soliton. Fract. 91 69

    [13]

    Maheri M, Arifin N M 2016 Nonlinear Dyn. 85 825

    [14]

    Chen Y, Li S G, Liu H 2016 Acta Phys. Sin. 65 170501 (in Chinese) [陈晔, 李生刚, 刘恒 2016 物理学报 65 170501]

    [15]

    Pan G, Wei J 2015 Acta Phys. Sin. 64 040505 (in Chinese) [潘光, 魏静 2015 物理学报 64 040505]

    [16]

    Wen S F, Shen Y J, Yang S P 2016 Acta Phys. Sin. 65 094502 (in Chinese) [温少芳, 申永军, 杨绍普 2016 物理学报 65 094502]

    [17]

    Zhang H G, Ma T D, Huang G B, Wang Z L 2010 IEEE Trans. Syst. Man Cybern. B: Cybern. 40 831

    [18]

    Deng W H, Li C P, L J H 2007 Nonlinear Dyn. 48 409

    [19]

    Wang Z, Huang X, Shi G D 2011 Comput. Math. Appl. 62 1531

    [20]

    Bhalekar S, Daftardar-Gejji V 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 2178

    [21]

    Daftardar-Gejji V, Bhalekar S, Gade P 2012 Pramana 79 61

    [22]

    Liu H R, Yang J 2015 Entropy 17 4202

    [23]

    Wang S, Yu Y G, Wen G G 2014 Nonlinear Anal. Hybrid Syst. 11 129

    [24]

    Velmurugan G, Rakkiyappan R 2016 ASME J. Comput. Nonlinear Dyn. 11 031016

    [25]

    Li D, Zhang X P 2016 Neurocomputing 216 39

    [26]

    Zeng Z Z 2013 Acta Phys. Sin. 62 030504 (in Chinese) [曾喆昭 2013 物理学报 62 030504]

    [27]

    Yan X M, Liu D, Guo H J 2010 Control Theory Appl. 27 344 (in Chinese) [阎晓妹, 刘丁, 郭会军 2010 控制理论与应用 27 344]

    [28]

    Deng L W 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [邓立为 2014 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [29]

    Li C P, Deng W H 2007 Appl. Math. Comput. 187 777

    [30]

    Tao G 1997 IEEE Trans. Automat. Control 42 698

    [31]

    Bhalekar S, Daftardar-Gejji V 2011 J. Fract. Calc. Appl. 1 1

  • [1]

    Hermann R 2010 Physica A 389 4613

    [2]

    Li C L, Yu S M, Luo X S 2012 Chin. Phys. B 21 100506

    [3]

    Peterson M R, Nayak C 2014 Phys. Rev. Lett. 113 086401

    [4]

    Maione G 2013 IEEE Trans. Autom. Control 58 1579

    [5]

    Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 240504 (in Chinese) [胡建兵, 赵灵冬 2013 物理学报 62 240504]

    [6]

    Chen D Y, Zhang R F, Liu X Z, Ma X Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 4105

    [7]

    Balasubramaniam P, Muthukumar P, Ratnavelu K 2015 Nonlinear Dyn. 80 249

    [8]

    Muthukumar P, Balasubramaniam P, Ratnavelu K 2015 Nonlinear Dyn. 80 1883

    [9]

    Gao F, Li T, Tong H Q, Ou Z L 2016 Acta Phys. Sin. 65 230502 (in Chinese) [高飞, 李腾, 童恒庆, 欧卓玲 2016 物理学报 65 230502]

    [10]

    Andrew L Y T, Li X F, Chu Y D, Zhang H 2015 Chin. Phys. B 24 010502

    [11]

    Gao Y, Liang C H, Wu Q Q, Yuan H Y 2015 Chaos Soliton. Fract. 76 190

    [12]

    Khanzadeh A, Pourgholi M 2016 Chaos Soliton. Fract. 91 69

    [13]

    Maheri M, Arifin N M 2016 Nonlinear Dyn. 85 825

    [14]

    Chen Y, Li S G, Liu H 2016 Acta Phys. Sin. 65 170501 (in Chinese) [陈晔, 李生刚, 刘恒 2016 物理学报 65 170501]

    [15]

    Pan G, Wei J 2015 Acta Phys. Sin. 64 040505 (in Chinese) [潘光, 魏静 2015 物理学报 64 040505]

    [16]

    Wen S F, Shen Y J, Yang S P 2016 Acta Phys. Sin. 65 094502 (in Chinese) [温少芳, 申永军, 杨绍普 2016 物理学报 65 094502]

    [17]

    Zhang H G, Ma T D, Huang G B, Wang Z L 2010 IEEE Trans. Syst. Man Cybern. B: Cybern. 40 831

    [18]

    Deng W H, Li C P, L J H 2007 Nonlinear Dyn. 48 409

    [19]

    Wang Z, Huang X, Shi G D 2011 Comput. Math. Appl. 62 1531

    [20]

    Bhalekar S, Daftardar-Gejji V 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 2178

    [21]

    Daftardar-Gejji V, Bhalekar S, Gade P 2012 Pramana 79 61

    [22]

    Liu H R, Yang J 2015 Entropy 17 4202

    [23]

    Wang S, Yu Y G, Wen G G 2014 Nonlinear Anal. Hybrid Syst. 11 129

    [24]

    Velmurugan G, Rakkiyappan R 2016 ASME J. Comput. Nonlinear Dyn. 11 031016

    [25]

    Li D, Zhang X P 2016 Neurocomputing 216 39

    [26]

    Zeng Z Z 2013 Acta Phys. Sin. 62 030504 (in Chinese) [曾喆昭 2013 物理学报 62 030504]

    [27]

    Yan X M, Liu D, Guo H J 2010 Control Theory Appl. 27 344 (in Chinese) [阎晓妹, 刘丁, 郭会军 2010 控制理论与应用 27 344]

    [28]

    Deng L W 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [邓立为 2014 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [29]

    Li C P, Deng W H 2007 Appl. Math. Comput. 187 777

    [30]

    Tao G 1997 IEEE Trans. Automat. Control 42 698

    [31]

    Bhalekar S, Daftardar-Gejji V 2011 J. Fract. Calc. Appl. 1 1

  • [1] 贾雅琼, 蒋国平. 基于状态观测器的分数阶时滞混沌系统同步研究. 物理学报, 2017, 66(16): 160501. doi: 10.7498/aps.66.160501
    [2] 陈晔, 李生刚, 刘恒. 基于自适应模糊控制的分数阶混沌系统同步. 物理学报, 2016, 65(17): 170501. doi: 10.7498/aps.65.170501
    [3] 潘光, 魏静. 一种分数阶混沌系统同步的自适应滑模控制器设计. 物理学报, 2015, 64(4): 040505. doi: 10.7498/aps.64.040505
    [4] 吴学礼, 刘杰, 张建华, 王英. 基于不确定性变时滞分数阶超混沌系统的滑模自适应鲁棒的同步控制. 物理学报, 2014, 63(16): 160507. doi: 10.7498/aps.63.160507
    [5] 黄丽莲, 齐雪. 基于自适应滑模控制的不同维分数阶混沌系统的同步. 物理学报, 2013, 62(8): 080507. doi: 10.7498/aps.62.080507
    [6] 张旭东, 朱萍, 谢小平, 何国光. 混沌神经网络的动态阈值控制. 物理学报, 2013, 62(21): 210506. doi: 10.7498/aps.62.210506
    [7] 马铁东, 江伟波, 浮洁, 柴毅, 陈立平, 薛方正. 一类分数阶混沌系统的自适应同步. 物理学报, 2012, 61(16): 160506. doi: 10.7498/aps.61.160506
    [8] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制. 物理学报, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [9] 曹鹤飞, 张若洵. 基于滑模控制的分数阶混沌系统的自适应同步. 物理学报, 2011, 60(5): 050510. doi: 10.7498/aps.60.050510
    [10] 赵灵冬, 胡建兵, 刘旭辉. 参数未知的分数阶超混沌Lorenz系统的自适应追踪控制与同步. 物理学报, 2010, 59(4): 2305-2309. doi: 10.7498/aps.59.2305
    [11] 张若洵, 杨洋, 杨世平. 分数阶统一混沌系统的自适应同步. 物理学报, 2009, 58(9): 6039-6044. doi: 10.7498/aps.58.6039
    [12] 吴然超. 时滞离散神经网络的同步控制. 物理学报, 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [13] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [14] 楼旭阳, 崔宝同. 混沌时滞神经网络系统的反同步. 物理学报, 2008, 57(4): 2060-2067. doi: 10.7498/aps.57.2060
    [15] 张 敏, 胡寿松. 不确定时滞混沌系统的自适应动态神经网络控制. 物理学报, 2008, 57(3): 1431-1438. doi: 10.7498/aps.57.1431
    [16] 张军峰, 胡寿松. 基于一种新型聚类算法的RBF神经网络混沌时间序列预测. 物理学报, 2007, 56(2): 713-719. doi: 10.7498/aps.56.713
    [17] 李 军, 刘君华. 一种新型广义RBF神经网络在混沌时间序列预测中的研究. 物理学报, 2005, 54(10): 4569-4577. doi: 10.7498/aps.54.4569
    [18] 谭 文, 王耀南. 不确定混沌系统的直接自适应模糊神经网络控制. 物理学报, 2004, 53(12): 4087-4091. doi: 10.7498/aps.53.4087
    [19] 何国光, 曹志彤. 混沌神经网络的控制. 物理学报, 2001, 50(11): 2103-2107. doi: 10.7498/aps.50.2103
    [20] 关新平, 唐英干, 范正平, 王益群. 基于神经网络的混沌系统鲁棒自适应同步. 物理学报, 2001, 50(11): 2112-2115. doi: 10.7498/aps.50.2112
计量
  • 文章访问数:  6597
  • PDF下载量:  416
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-21
  • 修回日期:  2017-01-13
  • 刊出日期:  2017-05-05

/

返回文章
返回