搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阈值系数拟合的高精度拉曼分布式光纤传感技术

黄鑫 曹康怡 柴明渊 张炜怡 薛晓辉 李健 张明江

引用本文:
Citation:

基于阈值系数拟合的高精度拉曼分布式光纤传感技术

黄鑫, 曹康怡, 柴明渊, 张炜怡, 薛晓辉, 李健, 张明江

High accuracy Raman distributed fibre optic sensing technology based on threshold coefficient fitting

HUANG Xin, CAO Kangyi, CHAI Mingyuan, ZHANG Weiyi, XUE Xiaohui, LI Jian, ZHANG Mingjiang
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 针对传统拉曼分布式光纤传感技术中由于米量级空间分辨率性能不足,导致传感光纤沿线亚空间分辨率长度探测光纤区域内系统测量精度下降的技术瓶颈,本研究提出一种基于一维寻峰方法的阈值系数拟合方法。该方法通过提取探测光纤区域内分布式温升曲线的峰值系数和半高全宽(full width at half maximum,FWHM) ,然后建立拉曼散射阈值系数拟合模型及“FWHM-传感距离-探测光纤尺寸”的定量映射模型,进而计算出最优拉曼散射阈值系数,最终重构光纤沿线分布式温度场信号。实验结果表明:应用该技术后,在10 km传感距离下,系统在30 cm探测光纤上的测温误差相较于传统温度解调技术(34.7℃)显著降低,温度精度达到1.5℃。此外,FWHM与传感距离呈线性正相关,且独立于温度变化,该特性确保了该技术在不同环境温度下的稳定性和适应性。本论文通过纯算法方案重构光纤沿线拉曼散射信号,无须增加额外器件,为高精度分布式温度监测在长距离基础设施健康诊断等领域的应用提供了一种新方案。
    In response to the technical issue in Raman distributed optical fiber technology where the traditional meter-level spatial resolution performance is insufficient, leading to a decline in system measurement accuracy within sub-spatial resolution fiber segments along the sensing fiber, a threshold coefficient fitting technique based on a one-dimensional peak-seeking method is proposed in this study. Significant temperature measurement errors of up to tens of degrees Celsius are caused by the overlap of Raman scattering signals from non-detection regions when the detection fiber length is shorter than the system's spatial resolution. This severely limits the technology application in scenarios requiring precise temperature monitoring. To overcome the above bottleneck, a purely algorithmic approach is introduced, which reconstructs the temperature field without requiring hardware modifications. The sensing fiber was globally scanned using the one-dimensional peak-finding algorithm to precisely locate sub-spatial resolution detection fiber regions. Simultaneously, the peak intensity, full width at half maximum (FWHM), and location were extracted from the temperature rise curve within the fiber under test (FUT). Through pre-calibration experiments, a quantitative fitting model was established between peak temperature rise curves and threshold coefficients, revealing a quantitative mapping relationship between FWHM and sensing distance, as well as length of FUT. The results indicated that FWHM exhibited a significant positive linear correlation with sensing distance, independent of temperature variations. This characteristic enabled FWHM to serve as a reliable feature parameter for identifying the actual length of detection fibres. During real-time measurements, the detection fiber length was determined via the mapping model based on extracted FWHM and location. Then the corresponding threshold coefficient fitting model is selected to compensate for distorted temperature rise peaks, thereby reconstructing distributed temperature field. Experimental results demonstrated that over a 10-kilometre sensing distance, the results indicate that the application of this technique significantly enhanced the temperature measurement accuracy within the 30 cm detection fiber, achieving 1.5 °C compared to the baseline accuracy of 34.7 °C before compensation. Conclusions indicate that the proposed threshold coefficient fitting technique, through algorithmic innovation, effectively overcomes the technical limitation of deteriorating temperature measurement accuracy in sub-spatial resolution regions within Raman distributed fibre optics sensing. The constructed FWHM quantitative mapping model provides critical basis for threshold compensation, ultimately achieving precise temperature monitoring of sub-metre regions within long-distance sensing contexts. This solution features a streamlined structure, low cost, and ease of engineering integration. It offers a novel approach for long-term, high-precision temperature monitoring in fields such as power cable fault orienation, oil and gas pipeline micro-leakage early warning, and civil structural health monitoring.
  • [1]

    Zhou X, Wang F, Yang C Y, Zhang Z J, Zhang Y X, Zhang X P 2023 Sensors 23 7116

    [2]

    Li J, Zhang M J 2022 Light: Sci. Appl. 11 128

    [3]

    Li J, Zhou X X, Xu Y, Qiao L J, Zhang J Z, Zhang M J 2022 Photonics Res. 10 205

    [4]

    Zhou Z X, Sha Y S, Zhang D W,L H,Han Y S,Yang X Y,Liao F,Feng X W,Zhu J J,Zheng X F,Cui Z F,Qu J,Yuan Y S,Xu X F,Tao T B 2021 Opt. Fiber Technol. 66 102667

    [5]

    Zhang X P, Zhang Y X, Wang L, Yu K L, Liu B, Yin G L, Liu K, Li X, Li S N, Ding C Q, Tang Y Q, Shang Y, Wang Y S, Wang C, Wang F, Fan X Y, Sun Q Z, Xie S R, Wu H J, Wu H, Wang H P, Zhao Z Y 2024 Acta Opt. Sin. 44 0106001 (in Chinese) [张旭苹, 张益昕, 王亮, 余贶琭, 刘波, 尹国路, 刘琨, 李璇, 李世念, 丁传奇, 汤玉泉, 尚盈, 王奕首, 王晨, 王峰, 樊昕昱, 孙琪真, 谢尚然, 吴慧娟, 吴昊, 王花平, 赵志勇 2024 光学学报 44 0106001]

    [6]

    Wang X, Jiang J F, Wang S, Liu K, Liu T G 2021 Photonics Res. 9 521

    [7]

    Wang Y P, Zhong H J, Shan R Y, Liang W F, Peng Z W, Meng Y J, Liao C R, Fu C L 2024 Laser Optoelectron. Prog. 61 0106002 (in Chinese) [王义平, 钟华健, 单荣毅, 梁文发, 彭振威, 孟彦杰, 廖常锐, 付彩玲 2024 激光与光电子学进展 61 0106002]

    [8]

    Liang Z H, Deng K W, Ma Y L, Wang M H, Liu D B, Wu H Q, Wang Y S 2024 Acta Opt. Sin. 44 0106020 (in Chinese) [梁智洪, 邓凯文, 马云龙, 王明华, 刘德博, 吴会强, 王奕首 2024 光学学报 44 0106020]

    [9]

    Yu T, Ren C G, Jia Y B, Li J, Zhang J Z, Xu Y 2021 IEEE Sens. J. 21 373

    [10]

    L C B Silva, M E V Segatto, C E S Castellani 2022 Opt. Fiber Technol. 74 103091

    [11]

    R Tangudu, P K Sahu, 2022 J. Inst. Electron. Telecommun. Eng. 39 553

    [12]

    Zhu W H, Wu H T, Chen W X, Zhou M T, Yin G L, Guo N, Zhu T 2022 Sensors 22 9942

    [13]

    Duan R 2022 IEEE Access 10 57242

    [14]

    Xu Y, Li J, Zhang M J, Yu T, Yan B Q, Zhou X X, Yu F H, Zhang J Z, Qiao L J, Wang T, Gao S H 2020 IEEE Sens. J. 20 7870

    [15]

    Kim H Y, Lee J H, Kim T K, Park S J, Kim H M, Jung I D 2023 Case Stud. Therm. Eng. 2023 42 102747

    [16]

    Yan B Q, Li J, Zhang M J, Zhang J Z, Qiao L J, Wang T 2019 Sensors 19 2320.

    [17]

    Yan J F, Shi B, Zhu H H, Wang B J, Wei G Q, Cao D F 2015 Eng. Geol. 186 100

    [18]

    Silva M S P e, Alves H P, Oliveira H J B d, Leão L H V, Nascimento J F d, Martins-Filho J F 2023 IEEE Trans. Instrum. Meas. 72 7003908.

    [19]

    Liu T, Wang H H, Wang X,Wang Y H, Zeng S K, Wang Y R 2023 Opt. Fiber Technol. 75 103177

    [20]

    Chen P C, Zhang.T, Yang J H,Dong X P D 2023 IEEE Sens. J. 23 17593

    [21]

    Li J, Zhang Q, Xu Y, Zhang M J, Zhang J Z,Qiao L J, Promi P M M 2019 Opt. Express 27 38163

    [22]

    Gasser J, Warpelin D, Bussieres F, Extermann J, Pomarico E 2022 Opt. Express 30 6768

    [23]

    Ososkov Y Z, Chernutsky A O, Dvoretskiy D A, Sazonkin S G, Kudelin I S, Orekhov, I O, Pnev A B, Karasik V E 2019 Opt. Spectrosc. 127 664

    [24]

    Jie R M, Xiao C, Liu X, Zhu C, Rao Y J, Liu B 2024 Acta Opt. Sin. 44 0106011 (in Chinese) [介瑞敏, 肖春, 刘旭, 朱琛, 饶云江, 刘波 2024 光学学报 44 0106011]

    [25]

    Zhang F, Li J, Li L L, Cao K Y, Xue X H, Zhang M J 2025 Infrared and Laser Engineering 54 20240582 (in Chinese) [张帆, 李健, 李璐磊, 曹康怡, 薛晓辉, 张明江 2025 红外与激光工程 54 20240582]

    [26]

    Lin Q C, Cheng L H, Lü J, Zhang T F, Liang H, Guan B O 2024 Acta Opt. Sin. 44 0106013 (in Chinese) [林全聪, 程凌浩, 吕杰, 张天放, 梁浩, 关柏鸥 2024 光学学报 44 255]

    [27]

    Chai D D, Zhang H J, Gao Y, Jin B Q 2022 IEEE Sens. J. 23 2204

    [28]

    Sun X Z, Yang Z S, Hong X B, Zaslawski S, Wang S, Soto M A,Gao X, Wu J, Thévenaz L 2020 Nat. Commun. 11 5774

    [29]

    Wang M, Wu H, Tang M, Zhao Z Y, Dang Y L, Zhao C, Liao R L, Chen W, Fu S N, Yang C, Tong W J, Shum P P, Liu D M 2017 Opt. Express 25 4907-4916

    [30]

    Liu Y P, Ma L, Yang C Tong W J, He Z Y 2018 Opt. Express 26 20562

    [31]

    Wu H, Du H, Zhao C, Tang M 2022 Sensors 22 2139

    [32]

    Dai G Y, Fan X Y, He Z Y 2018 2018 Asia Communications and Photonics Conference (ACP) Hangzhou China, October 26-29 2018 p1

    [33]

    Soto M A, Ramírez J A, Thévenaz L 2016 Nat. Commun. 7 10870

    [34]

    Zhang Z S, Wu H, Zhao C,Tang M 2021 J. Lightwave Technol. 39 654-659

    [35]

    Ren Y L,Li T F, Wang R G, Li H G, Ba D X, Dong Y K 2025 Laser Photonics Rev. 19 2402071

    [36]

    Wang C Y, Li J, Zhou X X, Cheng Z J, Qiao L J, Xue X H, Zhang M J 2023 Light:Sci. Appl. 12 213

    [37]

    Fan B W, Li J, Cheng Z J,Xue X H, Zhang M J 2024 Photonics Res. 12 2365

    [38]

    Li J, Zhou X X, Yin Z. T, Wang C Y,Xu Y, Zhang J Z, Zhang M J 2021 Adv. Photonics Res. 2 2100047

    [39]

    Li J, Wang C Y, Cao K Y, Fan B W, Zhou X X, Xu Y, Cheng Z J, Zhang Q, Qiao L J, Xue X H, Zhang J Z, Zhang M J 2023 APL Photonics 8 076105

  • [1] 冯玉祥, 汪雨辰, 童家欢, 吕立冬. 基于动态标定的拉曼分布式光纤测温系统研究. 物理学报, doi: 10.7498/aps.74.20241652
    [2] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, doi: 10.7498/aps.72.20221653
    [3] 刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军. 外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究. 物理学报, doi: 10.7498/aps.71.20220712
    [4] 杨玉莲, 刘黎明, 邓庆雪, 贾新鸿, 梁文燕, 姜利, 宋伟杰, 牟欣扬. 非线性效应对前向受激布里渊散射分布式传感的影响. 物理学报, doi: 10.7498/aps.71.20220313
    [5] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, doi: 10.7498/aps.70.20210201
    [6] 李斌, 罗时文, 余安澜, 熊东升, 王新兵, 左都罗. 共焦腔增强的空气拉曼散射. 物理学报, doi: 10.7498/aps.66.190703
    [7] 朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华. 基于电子轰击式CCD的大动态条纹相机研究. 物理学报, doi: 10.7498/aps.64.098501
    [8] 任秀云, 田兆硕, 孙兰君, 付石友. 激光波长对拉曼散射水温遥感系统测温精度及探测深度的影响. 物理学报, doi: 10.7498/aps.63.164209
    [9] 王杰, 贾新鸿, 饶云江, 吴慧娟. 基于双向拉曼放大的相位敏感光时域反射仪. 物理学报, doi: 10.7498/aps.62.044212
    [10] 张超, 饶云江, 贾新鸿, 邓坤, 苌亮, 冉曾令. 光脉冲编码对基于拉曼放大的布里渊光时域分析系统的影响. 物理学报, doi: 10.7498/aps.60.104211
    [11] 代秋声, 漆玉金. 针孔单光子发射计算机断层成像的空间分辨率研究. 物理学报, doi: 10.7498/aps.59.1357
    [12] 张小正, 毕传兴, 徐亮, 陈心昭. 基于波叠加法的近场声全息空间分辨率增强方法. 物理学报, doi: 10.7498/aps.59.5564
    [13] 张超, 饶云江, 贾新鸿, 苌亮, 冉曾令. 基于双向拉曼放大的布里渊光时域分析系统. 物理学报, doi: 10.7498/aps.59.5523
    [14] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, doi: 10.7498/aps.56.359
    [15] 刘华锋. 利用作用深度信息提高正电子断层成像仪分辨率一致性. 物理学报, doi: 10.7498/aps.55.5186
    [16] 成 泽. 压电晶体拉曼散射的统一量子论. 物理学报, doi: 10.7498/aps.54.5435
    [17] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算. 物理学报, doi: 10.7498/aps.54.5262
    [18] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究. 物理学报, doi: 10.7498/aps.54.2106
    [19] 张喜和, 姚治海, 李晓英, 李春明, 冯克成, 王兆民. 高保偏光纤前方受激拉曼散射光谱特性的研究. 物理学报, doi: 10.7498/aps.52.840
    [20] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究. 物理学报, doi: 10.7498/aps.51.629
计量
  • 文章访问数:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-12

/

返回文章
返回