搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拉曼-布里渊散射的海水盐度精细探测遥感方法

鲍冬 华灯鑫 齐豪 王骏

引用本文:
Citation:

基于拉曼-布里渊散射的海水盐度精细探测遥感方法

鲍冬, 华灯鑫, 齐豪, 王骏

Method of remotely sensing seawater salinity fine detection based on Raman Brillouin scattering

Bao Dong, Hua Deng-Xin, Qi Hao, Wang Jun
PDF
HTML
导出引用
  • 盐度是海洋学中重要的物理参量之一, 其对生物学研究、气候模拟、天气预报以及飓风路径预测都具有极其重要的意义. 在基于拉曼光谱的海洋盐度遥感探测中, 由于拉曼光谱同时与盐度及海水温度相关, 因此反演盐度时, 需要参数假设, 从而降低探测精度. 为实现对盐度的高精度遥感探测, 本文提出了融合水体布里渊散射与拉曼散射光谱的盐度精细反演方法. 文中根据拉曼光谱的低频部分与高频部分的面积比值与水体温度和盐度有定量的关系, 利用最小二乘方法, 建立拉曼光谱与温度和盐度的二元函数方程. 由于布里渊频移量的大小与介质中的声速相关, 而声速变化是由温度和盐度的变化引起, 因此布里渊频移量的大小也同时与盐度及海水温度相关. 激光雷达遥感探测方法可以同时探测拉曼光谱和布里渊频移这两个参量, 因此利用拉曼光谱和布里渊频移与盐度和温度之间的关系, 建立了盐度高精度反演模型, 并分析了探测结果的误差, 得到盐度的反演误差小于0.47‰.
    Salinity is an important physical parameter in oceanography. The change of seawater salinity is closely related to the change of marine environment and climate. Investigation of seawater salinity is of great significance for marine biology, climate simulation, weather forecast and hurricane path prediction. At present, in the research of seawater salinity detection based on Raman scattering, the influence of temperature change is ignored, which will cause inaccurate detection results. In order to achieve high-precision detection of seawater salinity, in this paper, a method of combining the precision salinity inversion with ocean Brillouin scattering is proposed. According to the influence of temperature and salinity on Raman scattering spectra, the functional relationship between them is established. Raman scattering spectra and Brillouin frequency shift are used to implement the inversion seawater salinity. The Brillouin frequency shift cannot be obtained directly by the lidar remote sensing method. It can only detect the energy of the echo signal through edge detection, and the photon correlation spectroscopy technology is used to detect the spectra width. The Brillouin frequency shift can be calculated by the energy and spectral width of the echo signal. Therefore, the accurate inversion of seawater salinity can be realized by detecting Raman spectra, Brillouin spectra width and energy signal. The experimental results of Raman spectroscopy are used to verify the established functional relationship, and the inversion error of seawater salinity is less than 0.47‰. In the experiment, the influence of seawater temperature control accuracy of ±0.2 ℃ and the detection results of Brillouin spectrum width and energy are analyzed. Through using the error in measurement result of each parameter, the salinity inversion error caused by them is analyzed. Using the Raman spectrum and Brillouin frequency shift, the problem of the accurate inversion of seawater salinity is solved, and the influence of temperature change on salinity inversion is eliminated. This research provides reliable data support for improving the marine environment, early warning of marine disaster and marine meteorological forecast accuracy, and has important research value and significant social benefits. This method also provides a feasible solution for ocean detection lidar used to detect seawater salinity.
      通信作者: 王骏, wangjun790102@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41875034, 41627807)资助的课题
      Corresponding author: Wang Jun, wangjun790102@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41875034, 41627807)
    [1]

    Noto V D, Mecozzi M 1997 Appl. Spectrosc. 51 1294Google Scholar

    [2]

    Rudolf A, Walther T 2014 Opt. Eng. 53 051407Google Scholar

    [3]

    任秀云 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Ren X Y 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [4]

    Xu Z, Yu Z Z, Fu X Z, Yu X Q 2021 Act. Ocean Sin. 40 22Google Scholar

    [5]

    Liu Y M, Zhang R H, Yin Y H, Niu T 2005 J. Mereorol. Res-Prc. 19 355

    [6]

    张兰杰 2019 博士学位论文 (北京: 中国科学院大学)

    Zhang L J 2019 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [7]

    Artlett C P, Pask H M 2017 Opt. Express 25 2840Google Scholar

    [8]

    Burikov S A, Churina I V, Dolenko S A, Dolenko T A, Fadeev V V 2004 EARSeL eProceedings 3 298

    [9]

    Wall T T, Hornig D F 1967 J. Chem. Phys. 47 784Google Scholar

    [10]

    何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟 2011 物理学报 60 054207Google Scholar

    He X D, Xia J, Shi J L, Liu J, Li S J, Liu J A, Fang W 2011 Acta Phys. Sin 60 054207Google Scholar

    [11]

    John M D, Craig R J, Sanford A A 1985 J. Chem. Phys. 82 1732Google Scholar

    [12]

    Eckhardt G, Wagner E G 1966 J. Mol. Spectrosc. 19 407Google Scholar

    [13]

    Liang K, Ma Y, Yu Y, Huang J, Li H 2012 Opt. Eng. 51 6002Google Scholar

    [14]

    赵丽娟 2010 物理学报 59 6219Google Scholar

    Zhao L J 2010 Acta Phys. Sin 59 6219Google Scholar

    [15]

    史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道 2019 物理学报 68 224Google Scholar

    Shi J L, Xu J, Luo N N, Wang Q, Zhang Y B, Zhang W W, He X D 2019 Acta Phys. Sin. 68 224Google Scholar

    [16]

    He X D, Wei H J, Shi J L, Liu J 2012 Opt. Commun. 285 4120Google Scholar

    [17]

    Grosso D V A 1974 J. Acoust. Soc. Am. 56 1084Google Scholar

    [18]

    Fry E S, Emery Y, Quan X H, Katz J W 1997 Appl. Opt. 36 6887Google Scholar

    [19]

    马泳, 梁琨, 林宏, 冀航 2008 光学学报 28 1508Google Scholar

    Ma Y, Liang K, Lin H, Ji H 2008 Acta. Opt. Sin. 28 1508Google Scholar

    [20]

    Ge Y, Shi J L, Zhu K X, He X D 2013 Chin. Opt. Lett. 11 110Google Scholar

    [21]

    任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 63 164209Google Scholar

    Ren X Y, Tian Z S, SUN J L, Fu S Y 2014 Acta Phys. Sin. 63 164209Google Scholar

    [22]

    Haltrin V I, Kattawar G W 1993 Appl. Opt. 32 5356Google Scholar

  • 图 1  海洋温盐探测高光谱激光雷达分光系统光路原理图

    Fig. 1.  Experimental setup for filter system of ocean temperature and salinity detection high-spectral-resolution-lidar.

    图 2  不同温度下纯水的拉曼散射光谱

    Fig. 2.  Raman scattering spectra of pure water at different temperatures.

    图 3  不同盐度溶液的Raman散射光谱 (a) NaCl溶液; (b) MgCl2溶液; (c) NaCl-MgCl2-Na2SO4三种介质混合溶液

    Fig. 3.  Raman scattering spectra of different salinity solutions: (a) NaCl solution; (b) MgCl2 solution; (c) NaCl-MgCl2-Na2SO4 three media mixture solutions.

    图 4  海水的Raman散射光谱

    Fig. 4.  Raman scattering spectrum of seawater.

    图 5  海水Raman散射光谱数据处理结果

    Fig. 5.  Data processing results of seawater Raman scattering spectrum.

    图 6  盐度值为35‰时不同温度下海水Brillouin散射光谱

    Fig. 6.  Brillouin scattering spectra of seawater at different temperatures with salinity of 35 ‰.

    图 7  Brillouin频移拟合关系vB (I, ΓB)与理论计算结果误差

    Fig. 7.  Difference between fitted Brillouin frequency shift vB (I, ΓB) and theoretical value.

    图 8  Raman光谱低、高频面积比的拟合结果与实验结果之间的误差

    Fig. 8.  The error between the fitting results of low and high frequency area ratio of Raman spectra and the experimental results.

    图 9  温度误差对Raman散射光谱低、高频面积比的对数值ln(SHB/SNHB)造成的影响 (a) 恒定盐度, 不同温度下对数面积比理论值与拟合值; (b) 温度误差导致对数面积的误差

    Fig. 9.  Effect of temperature error on the logarithmic value of the low and high frequency area ratio of Raman scattering spectra: (a) theoretical value and fitting value of log area ratio under constant salinity and different temperatures; (b) error of log area caused by temperature error.

    图 10  温度误差对Brillouin散射探测造成的影响 (a) 恒定盐度, 不同温度下谱宽理论值与拟合值; (b) 温度误差导致谱宽探测误差; (c) 恒定盐度, 不同温度下探测能量理论值与拟合值; (d) 温度误差导致能量探测误差

    Fig. 10.  Effect of temperature error on Brillouin scattering detection: (a) Theoretical and fitting values of spectrum width at different temperatures under constant salinity; (b) temperature error leads to spectrum width detection error; (c) theoretical and fitting values of detection energy at different temperatures under constant salinity; (d) temperature error leads to energy detection error.

    图 11  Raman光谱探测误差对盐度探测结果的影响 (a) 盐度反演结果理论值与拟合值; (b) 盐度反演误差结果

    Fig. 11.  Effect of Raman spectral detection errors for salinity detection results: (a) theoretical value and fitting value of salinity inversion results; (b) salinity inversion error results.

    图 12  Brillouin散射探测结果对盐度反演的影响 (a) 谱宽改变时, 盐度反演结果理论值与拟合值; (b) 谱宽误差导致盐度反演结果误差; (c) 能量改变时, 盐度反演结果理论值与拟合值; (d) 能量误差导致盐度反演结果误差

    Fig. 12.  Influence of Brillouin scattering detection results on salinity inversion: (a) Theoretical value and fitting value of salinity inversion results when the spectral width changes; (b) error of spectral width leads to the error of salinity inversion results; (c) theoretical value and fitting value of salinity inversion results when the energy changes; (d) error of energy leads to the error of salinity inversion results.

    表 1  恒定盐度下, 不同温度Brillouin线宽、能量和频移计算结果

    Table 1.  Calculation results of Brillouin spectrum width, energy and frequency shift at different temperatures under constant salinity.

    tSΓBIvB
    5301.27320.20537.38705
    10300.94240.2447.48328
    15300.73750.28597.56755
    20300.61300.32787.64070
    25300.53760.36747.70355
    30300.48830.4037.75694
    下载: 导出CSV
  • [1]

    Noto V D, Mecozzi M 1997 Appl. Spectrosc. 51 1294Google Scholar

    [2]

    Rudolf A, Walther T 2014 Opt. Eng. 53 051407Google Scholar

    [3]

    任秀云 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Ren X Y 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [4]

    Xu Z, Yu Z Z, Fu X Z, Yu X Q 2021 Act. Ocean Sin. 40 22Google Scholar

    [5]

    Liu Y M, Zhang R H, Yin Y H, Niu T 2005 J. Mereorol. Res-Prc. 19 355

    [6]

    张兰杰 2019 博士学位论文 (北京: 中国科学院大学)

    Zhang L J 2019 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [7]

    Artlett C P, Pask H M 2017 Opt. Express 25 2840Google Scholar

    [8]

    Burikov S A, Churina I V, Dolenko S A, Dolenko T A, Fadeev V V 2004 EARSeL eProceedings 3 298

    [9]

    Wall T T, Hornig D F 1967 J. Chem. Phys. 47 784Google Scholar

    [10]

    何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟 2011 物理学报 60 054207Google Scholar

    He X D, Xia J, Shi J L, Liu J, Li S J, Liu J A, Fang W 2011 Acta Phys. Sin 60 054207Google Scholar

    [11]

    John M D, Craig R J, Sanford A A 1985 J. Chem. Phys. 82 1732Google Scholar

    [12]

    Eckhardt G, Wagner E G 1966 J. Mol. Spectrosc. 19 407Google Scholar

    [13]

    Liang K, Ma Y, Yu Y, Huang J, Li H 2012 Opt. Eng. 51 6002Google Scholar

    [14]

    赵丽娟 2010 物理学报 59 6219Google Scholar

    Zhao L J 2010 Acta Phys. Sin 59 6219Google Scholar

    [15]

    史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道 2019 物理学报 68 224Google Scholar

    Shi J L, Xu J, Luo N N, Wang Q, Zhang Y B, Zhang W W, He X D 2019 Acta Phys. Sin. 68 224Google Scholar

    [16]

    He X D, Wei H J, Shi J L, Liu J 2012 Opt. Commun. 285 4120Google Scholar

    [17]

    Grosso D V A 1974 J. Acoust. Soc. Am. 56 1084Google Scholar

    [18]

    Fry E S, Emery Y, Quan X H, Katz J W 1997 Appl. Opt. 36 6887Google Scholar

    [19]

    马泳, 梁琨, 林宏, 冀航 2008 光学学报 28 1508Google Scholar

    Ma Y, Liang K, Lin H, Ji H 2008 Acta. Opt. Sin. 28 1508Google Scholar

    [20]

    Ge Y, Shi J L, Zhu K X, He X D 2013 Chin. Opt. Lett. 11 110Google Scholar

    [21]

    任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 63 164209Google Scholar

    Ren X Y, Tian Z S, SUN J L, Fu S Y 2014 Acta Phys. Sin. 63 164209Google Scholar

    [22]

    Haltrin V I, Kattawar G W 1993 Appl. Opt. 32 5356Google Scholar

  • [1] 李佳芮, 乐陶然, 尉昊赟, 李岩. 基于脉冲受激布里渊散射光谱的非接触式黏弹性测量. 物理学报, 2024, 73(12): 127801. doi: 10.7498/aps.73.20231974
    [2] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [3] 刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军. 外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究. 物理学报, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [4] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] 吴涛, 商景诚, 何兴道, 杨传音. 基于自发瑞利-布里渊散射的氮气体黏滞系数的测量. 物理学报, 2018, 67(7): 077801. doi: 10.7498/aps.67.20172438
    [6] 商景诚, 吴涛, 何兴道, 杨传音. 气体自发瑞利-布里渊散射的理论分析及压强反演. 物理学报, 2018, 67(3): 037801. doi: 10.7498/aps.67.20171672
    [7] 李斌, 罗时文, 余安澜, 熊东升, 王新兵, 左都罗. 共焦腔增强的空气拉曼散射. 物理学报, 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [8] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [9] 任秀云, 田兆硕, 孙兰君, 付石友. 激光波长对拉曼散射水温遥感系统测温精度及探测深度的影响. 物理学报, 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [10] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究. 物理学报, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [11] 侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊. 光子晶体光纤中布里渊散射声波模式特性的分析. 物理学报, 2012, 61(13): 134206. doi: 10.7498/aps.61.134206
    [12] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进. 物理学报, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [13] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法. 物理学报, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [14] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [15] 胡 妮, 熊 锐, 魏 伟, 王自昱, 汪丽莉, 余祖兴, 汤五丰, 石 兢. 自旋梯状化合物Sr14(Cu1-yFey)24O41的拉曼散射谱研究. 物理学报, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [16] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [17] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [18] 成 泽. 压电晶体拉曼散射的统一量子论. 物理学报, 2005, 54(11): 5435-5444. doi: 10.7498/aps.54.5435
    [19] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算. 物理学报, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [20] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究. 物理学报, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
计量
  • 文章访问数:  5381
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-07-16
  • 上网日期:  2021-08-16
  • 刊出日期:  2021-11-20

/

返回文章
返回