搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自发瑞利-布里渊散射的氮气体黏滞系数的测量

吴涛 商景诚 何兴道 杨传音

引用本文:
Citation:

基于自发瑞利-布里渊散射的氮气体黏滞系数的测量

吴涛, 商景诚, 何兴道, 杨传音

Measurement of bulk viscosity of nitrogen based on spontaneous Rayleigh-Brillouin scattering

Wu Tao, Shang Jing-Cheng, He Xing-Dao, Yang Chuan-Yin
PDF
导出引用
  • 体黏滞系数是从微观角度认识气体分子黏滞性的重要参数,传统的兆赫兹声频范围的声波吸收方法无法直接应用于声波弛豫效应在千兆赫兹范围的高频领域,而瑞利-布里渊散射则能实现对声波弛豫效应在千兆赫兹的气体体黏滞系数的测量.本文测量了532 nm激光激发的常温下压强分别为1–9 bar的氮气的自发瑞利-布里渊散射光谱,利用已知温度和压强的理论模型对测量光谱进行了比较,获得了准确的散射角.利用该散射角并结合χ2值最小原理反演得到不同压强(4–9 bar)下氮气的平均体黏滞系数为(1.46±0.14)×10-5kg·m-1·s-1,该结果与文献中利用自发瑞利-布里渊散射获得的结果和理论计算结果相近,但与相干瑞利-布里渊散射的测量结果相差明显.利用该平均体黏滞系数对氮气在不同压强下的温度进行了反演,得到各压强下的温度与实际温度的绝对误差小于2.50 K,反演温度的平均值与实际温度误差小于0.15 K,该结果证明了实验测量得到的氮气的体黏滞系数具有较高的准确性,同时也说明利用瑞利-布里渊散射反演气体参数具有较高的准确性和可靠性.
    Bulk viscosity is an important parameter to understand gas viscosity in micro perspective. The traditional ultrasound absorbtion method with acoustic frequencies in a megahertz range cannot be directly applied to high frequencies field, where acoustic waves are in the gigahertz domain. However, gas bulk viscosity at high frequency can be measured by spontaneous Rayleigh-Brillouin scattering (SRBS) and coherent Rayleigh-Brillouin scattering (CRBS). Recent researches show that the bulk viscosity of nitrogen measured by CRBS at a wavelength of 532 nm is obviously different from the values from SRBS in the near-ultraviolet region. In order to obtain accurate bulk viscosity of nitrogen at the wavelength of 532 nm, the SRBS spectra of nitrogen excited by a 532 nm laser are measured in a pressure range from 1 bar to 9 bar at the constant room temperature. The measured SRBS spectrum at the pressure of 7 bar is compared with the theoretical spectrum to obtain optimal scattering angle by using the principle of minimum value of χ2. The theoretical spectrum is calculated by convolving the Tenti S6 model with the instrument transmission function of measurement system. Given that the effect of pressure on the bulk viscosity is negligible, the bulk viscosity value (1.46±0.14)×10-5 kg·m-1-1 of nitrogen at a temperature of 299 K is acquired by averaging the values of bulk viscosity under different pressures (4-9 bar), each value is obtained by comparing the measured spectra at different pressures with the theoretical spectra by using the optimal scattering angle and the principle of minimum value of χ2. The values of bulk viscosity of nitrogen over the pressure of 1-3 bar are not considered because of its big deviation compared with the values under higher pressures (4-9 bar). The results show that the average value of bulk viscosity obtained in our experiment is close to that from the theoretical calculation and SRBS experiments reported in the literature but different obviously from the bulk viscosity obtained by CRBS. In order to testify the bulk viscosity of nitrogen measured in our experiment, it is used to retrieve temperature of nitrogen under pressure ranging from 1 bar to 9 bar. The results show that the absolute error between the retrieved temperature and the reference temperature under different pressures are all below 2.50 K and the difference between the average temperature and the reference temperature is less than 0.15 K. This demonstrates that the measured bulk viscosity of nitrogen in our experiment is accurate and reliable for the gas parameters retrieved by SRBS.
      通信作者: 吴涛, wutccnu@nchu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41665001,61177096)、航空科学基金(批准号:2015ZC56006)和江西省研究生创新专项资金(批准号:YC2017-S337)资助的课题.
      Corresponding author: Wu Tao, wutccnu@nchu.edu.cn
    • Funds: Project supported by Natural Science Foundation of China (Grant Nos. 41665001, 61177096), Aeronautical Science Fund, China (Grant No. 2015ZC56006), and the Graduate Student Innovation Foundation of Jiangxi Province, China (Grant No. YC2017-S337).
    [1]

    Mayorga M, Velasco R M 1997 Mol. Phys. 92 49

    [2]

    White F M 2006 Viscous Fluid Flow (3rd Ed.) (New York: McGraw-Hill) p287

    [3]

    Witschas B, Gu Z, Ubachs W 2014 Opt. Express 22 29655

    [4]

    Shang J C, Wu T, He X D, Yang C Y 2018 Acta Phys. Sin. 67 037801 (in Chinese) [商景诚, 吴涛, 何兴道, 杨传音 2018 物理学报 67 037801]

    [5]

    Gerakis A, Shneider M N, Stratton B C 2016 Appl. Phys. Lett. 109 031112

    [6]

    Xu J F, Li R S, Zhou J, Liu D H 2001 Acta Opt. Sin. 09 1112 (in Chinese) [徐建峰, 李荣胜, 周静, 刘大禾 2001 光学学报 09 1112]

    [7]

    Shi J L 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [史久林 2013博士学位论文 (武汉: 华中科技大学)]

    [8]

    Herzfeld K F, Litovitz T A, Yeager E 1960 Phys. Today 13 44

    [9]

    Pan X, Shneider M N, Miles R B 2005 Phys. Rev. A 71 45801

    [10]

    Gu Z, Ubachs W 2014 J. Chem. Phys. 141 104320

    [11]

    Gu Z, Ubachs W 2013 Opt. Lett. 38 1110

    [12]

    Vieitez M O, van Duijn E J, Ubachs W, Witschas B, Meijer A, de Wijn A S, Dam N J, van de Water W 2010 Phys. Rev. A 82 043836

    [13]

    Meijer A S, de Wijn A S, Peters M F E, Dam N J, van de Water W 2010 J. Chem. Phys. 133 164315

    [14]

    Gu Z, Witschas B, van de Water W, Ubachs W 2013 Appl. Opt. 19 4640

    [15]

    Witschas B, Lemmerz C, Reitebuch O 2014 Opt. Lett. 39 1972

    [16]

    Mielke A F, Seasholtz R G, Elam K A 2005 Exp. Fluids 39 441

    [17]

    Prangsma G J, Alberga A H, Beenakker J J M 1973 Physica 64 278

    [18]

    Cramer M S 2012 Phys. Fluids 24 531

    [19]

    Pan X, Shneider M N, Miles R B 2004 Phys. Rev. A 69 033814

    [20]

    Cornella B M, Gimelshein S F 2012 Opt. Express 20 12975

    [21]

    Graul J, Lilly T 2014 Opt. Express 22 20117

  • [1]

    Mayorga M, Velasco R M 1997 Mol. Phys. 92 49

    [2]

    White F M 2006 Viscous Fluid Flow (3rd Ed.) (New York: McGraw-Hill) p287

    [3]

    Witschas B, Gu Z, Ubachs W 2014 Opt. Express 22 29655

    [4]

    Shang J C, Wu T, He X D, Yang C Y 2018 Acta Phys. Sin. 67 037801 (in Chinese) [商景诚, 吴涛, 何兴道, 杨传音 2018 物理学报 67 037801]

    [5]

    Gerakis A, Shneider M N, Stratton B C 2016 Appl. Phys. Lett. 109 031112

    [6]

    Xu J F, Li R S, Zhou J, Liu D H 2001 Acta Opt. Sin. 09 1112 (in Chinese) [徐建峰, 李荣胜, 周静, 刘大禾 2001 光学学报 09 1112]

    [7]

    Shi J L 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [史久林 2013博士学位论文 (武汉: 华中科技大学)]

    [8]

    Herzfeld K F, Litovitz T A, Yeager E 1960 Phys. Today 13 44

    [9]

    Pan X, Shneider M N, Miles R B 2005 Phys. Rev. A 71 45801

    [10]

    Gu Z, Ubachs W 2014 J. Chem. Phys. 141 104320

    [11]

    Gu Z, Ubachs W 2013 Opt. Lett. 38 1110

    [12]

    Vieitez M O, van Duijn E J, Ubachs W, Witschas B, Meijer A, de Wijn A S, Dam N J, van de Water W 2010 Phys. Rev. A 82 043836

    [13]

    Meijer A S, de Wijn A S, Peters M F E, Dam N J, van de Water W 2010 J. Chem. Phys. 133 164315

    [14]

    Gu Z, Witschas B, van de Water W, Ubachs W 2013 Appl. Opt. 19 4640

    [15]

    Witschas B, Lemmerz C, Reitebuch O 2014 Opt. Lett. 39 1972

    [16]

    Mielke A F, Seasholtz R G, Elam K A 2005 Exp. Fluids 39 441

    [17]

    Prangsma G J, Alberga A H, Beenakker J J M 1973 Physica 64 278

    [18]

    Cramer M S 2012 Phys. Fluids 24 531

    [19]

    Pan X, Shneider M N, Miles R B 2004 Phys. Rev. A 69 033814

    [20]

    Cornella B M, Gimelshein S F 2012 Opt. Express 20 12975

    [21]

    Graul J, Lilly T 2014 Opt. Express 22 20117

  • [1] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [2] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [3] 商景诚, 吴涛, 何兴道, 杨传音. 气体自发瑞利-布里渊散射的理论分析及压强反演. 物理学报, 2018, 67(3): 037801. doi: 10.7498/aps.67.20171672
    [4] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [5] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [6] 陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟. 变温条件下受激布里渊散射增益系数的实验测量. 物理学报, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [7] 侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊. 光子晶体光纤中布里渊散射声波模式特性的分析. 物理学报, 2012, 61(13): 134206. doi: 10.7498/aps.61.134206
    [8] 赵江南, 艾勇, 王敬芳. 不需要校准激光的法-帕仪中高层大气温度反演方法和观测数据初步分析. 物理学报, 2012, 61(12): 129401. doi: 10.7498/aps.61.129401
    [9] 刘厚通, 陈良富, 苏林. Fernald前向积分用于机载激光雷达气溶胶后向散射系数反演的理论研究. 物理学报, 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [10] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 物理学报, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [11] 哈斯乌力吉, 李杏, 郭翔宇, 鲁欢欢, 吕志伟, 林殿阳, 何伟明, 范瑞清. 受激布里渊散射介质——全氟聚醚的温度特性研究. 物理学报, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [12] 赵丽娟. 环境温度宽范围变化对光纤布里渊频移的影响. 物理学报, 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [13] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [14] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频. 物理学报, 2008, 57(8): 4991-4994. doi: 10.7498/aps.57.4991
    [15] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [16] 王越, 蒋毅坚, 曾令祉, 刘玉龙, 庞玉璋, 朱恪. LBO晶体的布里渊散射与弹性和压电系数的测量. 物理学报, 1996, 45(4): 689-697. doi: 10.7498/aps.45.689
    [17] 朱丹, 张鹏翔, 周仲璧, 杨经国. 混合溶液的布里渊散射和喇曼散射研究. 物理学报, 1989, 38(4): 683-688. doi: 10.7498/aps.38.683
    [18] 徐至展, 唐永红, 钱爱娣. 激光等离子体受激布里渊散射光谱的周期性结构——前向散射的间接证据. 物理学报, 1988, 37(4): 557-565. doi: 10.7498/aps.37.557
    [19] 张鹏翔, 庞玉璋, G. GüNTHERODT, R. MOCK. BCVIG单晶的布里渊散射. 物理学报, 1987, 36(5): 577-583. doi: 10.7498/aps.36.577
    [20] 徐至展, 殷光裕, 张燕珍, 林康春. 激光等离子体相互作用中的受激布里渊散射. 物理学报, 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
计量
  • 文章访问数:  4707
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-13
  • 修回日期:  2018-01-27
  • 刊出日期:  2018-04-05

/

返回文章
返回