-
多模光纤的布里渊传感技术因其能够同时进行温度、应变等多参量的模态传输, 具备更高的信息容量和传输效率而备受关注. 此外, 铌酸锂材料凭借其优异的电光特性, 在传感领域展现出潜在应用价值, 有望提供更高灵敏度和精度. 然而, 受工艺成熟度影响, 目前光纤传感的研究多集中于硅基材料, 以铌酸锂为纤芯材料的研究相对较少, 其应用潜力被普遍低估. 本文针对铌酸锂光纤中的布里渊散射效应的理论研究, 通过有限元仿真技术, 模拟微米量级铌酸锂光纤中各阶数模式的后向布里渊散射特性, 分析光纤中前5个LP模(LP01, LP11, L P21, LP02和LP31)的模内受激布里渊散射特性, 以探明铌酸锂微米光纤模态内后向布里渊散射特性. 结果表明, 铌酸锂光纤的有效折射率(2.1785—1.9797)、布里渊散射频移( 20.63—18.747 GHz )以及增益( 4.0115—13.503 m–1·W–1 )均随着模式阶数的增高而减小. 模拟结果进一步表明, 与普通硅结构光纤相比, 铌酸锂光纤结构的布里渊增益有显著提高, 预示其在传感方面的灵敏度也会更高.
The Brillouin sensing technology in multimode optical fibers has received much attention due to its ability to simultaneously transmit multiple parameters, such as temperature and strain, and its higher information capacity and transmission efficiency. Additionally, lithium niobate possesses excellent electro-optical properties, so it shows potential application value in the sensing field and is expected to provide higher sensitivity and precision. Owing to the maturity of manufacturing processes, current research on fiber optic sensing focuses on silicon-based materials, however, there are fewer studies of fibers in which lithium niobate is used as the core material, thereby underestimating its application potential. In this work, the Brillouin scattering effects in lithium niobate optical fibers are investigated numerically. We simulate the intra-mode backward Brillouin scattering characteristics of the first five orders of LP modes in micrometer-sized lithium niobate fibers by means of finite-element simulation to explore its intrinsic law. First of all, the relationship between the Brillouin frequency shift and gain for the first five optical mode interactions is analyzed in detail. The results show that in the case of intra-mode BSBS, the peak of BFS exhibits a significant redshift ranging from 20.63 GHz to 18.747 GHz. The Brillouin gain coefficient decreases from 13.503 m–1·W–1 to 4.0115 m–1·W–1 with the increase of mode order, in which mode LP01 having the strongest gain intra modal interaction means the best sensing sensitivity. In addition, compared with ordinary silica fiber, the lithium niobate fiber has Brillouin gain increased by about 5 orders of magnitude, which means that fibers with lithium niobate as the core can have higher sensing sensitivity. In addition, it is found that although there are significant differences in the Brillouin frequency shift values of each optical mode under intra modal interactions, the sound velocity of their corresponding acoustic modes is always consistent under the same acoustic mode. In data processing, it is noticed that this is because as the mode order changes, the corresponding effective refractive index decreases to ensure that each acoustic mode of the material always has the same sound velocity. These findings provide a foundation for further studying the lithium niobate fiber sensors with electro-optic properties. -
Keywords:
- stimulated Brillouin scattering /
- lithium niobate /
- micron fibers /
- simulation
-
图 2 LiNbO3光纤结构原理图及光学声学模式分布图 (a) LiNbO3光纤结构原理图; (b) 光学模式分布图; (c) 声学模式分布图
Fig. 2. Schematic diagram of LiNbO3 optical fiber structure and distribution diagram of optical acoustic mode: (a) Schematic diagram of LiNbO3 optical fiber structure; (b) optical pattern distribution; (c) acoustic pattern distribution.
图 3 不同模式内布里渊增益谱以及SiO2光纤与LiNbO3光纤增益谱对比图 (a) LP01-LP01模式; (b) LP11-LP11模式; (c) LP21-LP21模式; (d) LP02-LP02模式; (e) LP31-LP31模式; (f) SiO2光纤与LiNbO3光纤增益谱对比图
Fig. 3. Gain spectrum within Brillouin in different modes and comparison of gain spectra between SiO2 and LiNbO3 fibers: (a) LP01-LP01 mode; (b) LP11-LP11 mode; (c) LP21-LP21 mode; (d) LP02-LP02 mode; (e) LP31-LP31 mode; (f) comparison of gain spectra between SiO2 and LiNbO3 fibers.
图 4 5个LPmn-LPmn的Pump-Stokes模式对相互作用的BGS的总洛伦兹曲线和布里渊频移及相对增益关系 (a) BGS的总洛伦兹曲线; (b) Pump-Stokes模式对中最高峰对应的BFS和增益关系
Fig. 4. Total Lorentz curves of BGS for the interaction of the pump-Stokes mode pairs of 5LPmn-LPmn and the BFS and relative gain relationship: (a) Total Lorentz curves of BGS; (b) the BFS and gain relationship for the highest peak of the pump-Stokes mode pairs.
图 5 声模速度与BFS的关系以及声模频率差关系 (a) 5个pump-Stokes模式对之间BFS与声速的关系; (b)模态间的频率差关系
Fig. 5. Relationship between the velocity of the sound model and the BFS and the relationship between the frequency difference of the sound mode: (a) BFS and sound velocity between five Pump-Stokes mode pairs; (b) frequency difference relationship between modalities.
表 1 光纤结构和材料参数[29]
Table 1. Fiber structure and material parameters.
Parameters Values Core Clading Radius/μm 3 — Refractive index 2.213 1 Mass density/(kg·m–3) 4700 1.29 Longitudinal acoustic velocity/(m·s–1) 7318 340 Photo-elastic coefficients p11 = –0.02, p12 = 0.08, p44 = 0.12 Transmission loss at
1550 nm /(dB·cm–1)0.89 -
[1] Hayashi N, Mizuno Y, Nakamura K, Zhang C, Jin L, Set S Y, Yamashita S 2020 Jpn. J. Appl. Phys. 59 088002Google Scholar
[2] Wang L, Zhou B, Shu C, He S L 2013 IEEE Photonics J. 5 6801808Google Scholar
[3] Catalano E, Vallifuoco R, Zeni L, Minardo A 2022 IEEE Sens. J. 22 6601Google Scholar
[4] Zeng Z, Peng D, Zhang Z Y, Zhang S J, Ni G M, Liu Y 2020 IEEE Photonics Tech. L. 32 995Google Scholar
[5] Coscetta, A, Minardo A, Zeni L 2020 Sensors 20 5629Google Scholar
[6] Gao S, Wen Z R, Wang H Y, Baker C, Chen L, Cai Y J, Bao X Y 2023 J. Lightwave Tech. 41 4359Google Scholar
[7] Peng J Q, Lu Y G, Zhang Z L, Wu Z N, Zhang Y Y 2021 IEEE Photonics Tech. L. 33 1217Google Scholar
[8] Ba D X, Chen C, Fu C, Zhang D Y, Lu Z W, Fan Z G, Dong Y K 2018 IEEE Photonics J. 10 7100810
[9] Liu P K, Lu Y A, Zhang W J, Zhu M 2024 Opt. Commun. 563 130571Google Scholar
[10] Ippen E P, Stolen R H 1972 Appl. Phys. Lett. 21 539Google Scholar
[11] Kobyakov A, Sauer M, Chowdhury D 2009 Adv. Opt. Photonics 2 1
[12] Hill K O, Kawasaki B S, Johnson D C 1976 Appl. Phys. Lett. 28 608Google Scholar
[13] Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662Google Scholar
[14] Dong Y K 2021 Photonic Sens. 11 69Google Scholar
[15] Feng C, Schneider T 2021 Sensors 21 1881Google Scholar
[16] Eggleton B J, Poulton C G, Pant R 2013 Adv. Opt. Photonics 5 536Google Scholar
[17] Yang Y H, Wang J Q, Zhu Z X, Xu X B, Zhang Q, Lu J J, Zeng Y, Dong C H, Sun L Y, Guo G C, Zou C L 2024 Sci. China Phys. Mec. 67 214221Google Scholar
[18] Rodrigues C C, Zurita R O, Alegre T P, Wiederhecker S G 2023 J. Opt. Soc. Am. B 40 56Google Scholar
[19] Otterstrom N T, Behunin R O, Kittlaus E A 2018 Science 360 1113Google Scholar
[20] Kittlaus E A, Shin H, Rakich P T 2016 Nat. Photonics 10 463Google Scholar
[21] Gyger F, Liu J Q, Yang F, He J J, Raja A S, Wang R N, Bhave S A, Kippenberg T J, Thevenaz L 2020 Phys. Rev. Lett. 124 013902Google Scholar
[22] Xiang C, Guo J, Jin W, Wu L, Peters J, Xie W Q, Chang L, Shen B Q, Wang H M, Yang Q F, Kinghorn D, Paniccia M, Vahala K J, Morton P A, Bowers J E 2021 Nat. Commun. 12 6650Google Scholar
[23] Botter R, Ye K X, Klaver Y, Suryadharma R, Daulay O, Liu G J, van den Hoogen J, Kanger L, van der Slot P, Klein E, Hoekman M, Roeloffzen C, Liu Y, Marpaung D 2022 Sci. Adv. 8 2196Google Scholar
[24] Morrison B, Casas-Bedoya A, Ren G, Vu K, Liu Y, Zarifi A, Nguyen T G, Choi D Y, Marpaung D, Madden S J, Mitchell A, Eggleton B J 2017 Optica 4 847Google Scholar
[25] Choudhary A, Morrison B, Aryanfar I, Shahnia S, Pagani M, Liu Y, Vu K, Madden S, Marpaung D, Eggleton B J 2017 J. Lightwave Tech. 35 846Google Scholar
[26] Florea C M, Bashkansky M, Dutton Z, Sanghera J, Pureza P, Aggarwal I 2006 Opt. Express 14 12063Google Scholar
[27] Balram K C, Davanço M I, Song J D, Srinivasan K 2016 Nat. Photonics 10 346Google Scholar
[28] Kim Y H, Song K Y 2021 Sensors 21 2168Google Scholar
[29] Feng L Y, Liu Y, He W J, You Y J, Wang L Y, Xu X, Chou X J 2022 Applied Sciences 12 6476Google Scholar
[30] Lin J, Bo F, Cheng Y, Xu J J 2020 Photonics Res. 8 1910Google Scholar
[31] Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 664Google Scholar
[32] Cao M, Huang L, Tang M, Mi Y A, Ren W H, Ning T G, Pei L, Ren G B 2022 Opt. Commun. 507 127612Google Scholar
[33] Florez O, Jarschel P F, Espinel Y A V, Cordeiro C M B, Alegre T P M, Wiederhecker G S, Dainese P 2016 Nat. Commun. 7 11759Google Scholar
[34] Rakich P T, Reinke C, Camacho R, Davids P, Wang Z 2012 Phys. Rev. X. 2 011008
计量
- 文章访问数: 209
- PDF下载量: 16
- 被引次数: 0