搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌酸锂微米光纤模内后向布里渊散射特性研究

贺文君 侯雅斐 闫嵩泉 吴泽鹏 刘毅 游亚军 何剑

引用本文:
Citation:

铌酸锂微米光纤模内后向布里渊散射特性研究

贺文君, 侯雅斐, 闫嵩泉, 吴泽鹏, 刘毅, 游亚军, 何剑

Intra-Mode Backward Stimulated Brillouin Scattering in Lithium Niobate Micron Fibers

He Wenjun, Hou Yafei, Yan Songquan, Wu Zepeng, Liu Yi, You Yajun, He Jian
PDF
导出引用
  • 多模光纤的布里渊传感技术因其能够同时进行温度、应变等多参量的模态传输,具备更高的信息容量和传输效率而备受关注。此外,铌酸锂材料凭借其优异的电光特性,在传感领域展现出潜在应用价值,有望提供更高灵敏度和精度。然而,受工艺成熟度影响,目前光纤传感的研究多集中于硅基材料,以铌酸锂为纤芯材料的研究相对较少,其应用潜力被普遍低估。本文针对铌酸锂光纤中的布里渊散射效应的理论研究,通过有限元仿真技术,模拟微米量级铌酸锂光纤中各阶数模式的后向布里渊散射特性,分析光纤中前5个LP模(LP01、LP11、L P21、LP02和LP31)的模内受激布里渊散射特性,以探明铌酸锂微米光纤模态内后向布里渊散射特性。结果表明,铌酸锂光纤的有效折射率(2.1785~1.9797)、布里渊散射频移( 20.63~18.747 GHz )以及增益( 4.0115 m−1·W−1-13.503 m−1·W−1 )均随着模式阶数的增高而减小,模拟结果进一步表明,与普通硅结构光纤相比,铌酸锂光纤结构的布里渊增益有显著提高,预示其在传感方面的灵敏度也会更高。
    The Brillouin sensing technology in multimode optical fibers has garnered significant attention due to its capability for simultaneous modal transmission of multiple parameters, such as temperature and strain, which confer it higher information capacity and transmission efficiency. Additionally, lithium niobate, with their excellent electro-optical properties, show potential application value in the sensing field and are expected to provide higher sensitivity and precision. However, owing to the maturity of manufacturing processes, current research on fiber optic sensing predominantly focuses on silicon-based materials, with relatively fewer studies dedicated to fibers using lithium niobate as the core material, thus underestimating its application potential. This paper investigates the theoretical aspects of Brillouin scattering effects in lithium niobate optical fibers. We simulate the intra-mode backward Brillouin scattering characteristics of the first five orders of LP modes in micrometer-scale lithium niobate fibers by means of finite-element simulation, in order to explore its intrinsic law.
    First of all, the relationship between the Brillouin frequency shift and gain for the first five optical mode interactions is analyzed in detail. The results showed that in the case of intra mode BSBS, the peak of BFS would exhibit a significant redshift, ranging from 20.63 GHz to 18.747 GHz. The Brillouin gain coefficient would also decrease from 13.503 m−1·W−1 to 4.0115 m−1·W−1 with increasing mode order, in which mode LP01 having the strongest gain intra modal interaction means the best sensing sensitivity. In addition, compared with ordinary silica fiber, the Brillouin gain of lithium niobate fiber is increased by about 5 orders of magnitude, which means that fibers with lithium niobate as the core can have higher sensing sensitivity. In addition, we found that although there are significant differences in the Brillouin frequency shift values of each order of optical modes under intra modal interactions, the sound velocity of their corresponding acoustic modes is always consistent under the same acoustic mode. In data processing, we noticed that this is because as the mode order changes, the corresponding effective refractive index also decreases to ensure that each acoustic mode of the material always has the same sound velocity. These findings provide the basis for lithium niobate fiber sensors with electro-optic properties.
  • [1]

    Hayashi N, Mizuno Y, Nakamura K, Zhang C, Jin L, Set S Y, Yamashita S 2020 Jpn. J. Appl. Phys.59 088002

    [2]

    Wang L, Zhou B, Shu C, He S L 2013 IEEE Photonics J. 5 6801808

    [3]

    Catalano E, Vallifuoco R, Zeni L, Minardo A 2022 IEEE Sens. J. 22 6601

    [4]

    Zeng Z, Peng D, Zhang Z Y, Zhang S J, Ni G M, Liu Y 2020 IEEE Photonics Tech. L. 32 995

    [5]

    Coscetta, A, Minardo A, Zeni L 2020 Sensors20 5629

    [6]

    Gao S, Wen Z R, Wang H Y, Baker C, Chen L, Cai Y J, Bao X Y 2023 J. Lightwave Tech. 41 4359

    [7]

    Peng J Q, Lu Y G, Zhang Z L, Wu Z N, Zhang Y Y 2021 IEEE Photonics Tech. L.33 1217

    [8]

    Ba D X, Chen C, Fu C, Zhang D Y, Lu Z W, Fan Z G, Dong Y K 2018 IEEE Photonics J.10 7100810

    [9]

    Liu P K, Lu Y A, Zhang W J, Zhu M 2024 Opt. Commun. 563 130571

    [10]

    Ippen E P; Stolen R H 1972 Appl. Phys. Lett. 21 539

    [11]

    Kobyakov A, Sauer M, Chowdhury D 2009 Adv. Opt. Photonics 2 1

    [12]

    Hill K O, Kawasaki B S, Johnson D C 1976 Appl. Phys. Lett. 28 608

    [13]

    Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J Lightwave Technol. 28 662

    [14]

    Dong Y K 2021 Photonic Sens. 11 69

    [15]

    Feng C, Schneider T 2021 Sensors 21 1881

    [16]

    Eggleton B J, Poulton C G, Pant R 2013 Adv. Opt. Photonics 5 536

    [17]

    Yang Y H, Wang J Q, Zhu Z X, Xu X B, Zhang Q, Lu J J, Zeng Y, Dong C H, Sun L Y, Guo G C, Zou C L 2024 Sci. China Phys. Mec.67 214221

    [18]

    Rodrigues C C, Zurita R O, Alegre T P, Wiederhecker S G 2023 J. Opt. Soc. Am. B 40 56

    [19]

    Otterstrom N T, Behunin R O, Kittlaus E A 2018 Science 360 1113

    [20]

    Kittlaus E A, Shin H, Rakich P T 2016 Nat. Photonics10 463

    [21]

    Gyger F, Liu J Q, Yang F, He J J, Raja A S, Wang R N, Bhave S A, Kippenberg T J, Thevenaz L 2020 Phys. Rev. Lett.124 013902

    [22]

    Xiang C, Guo J, Jin W, Wu L, Peters J, Xie W Q, Chang L, Shen B Q, Wang H M, Yang Q F, Kinghorn D, Paniccia M, Vahala K J, Morton P A, Bowers J E 2021 Nat. Commun.12 6650

    [23]

    Botter R, Ye K X, Klaver Y, Suryadharma R, Daulay O, Liu G J, van den Hoogen J, Kanger L, van der Slot P, Klein E, Hoekman M, Roeloffzen C, Liu Y, Marpaung D 2022Sci. Adv.8 2196

    [24]

    Morrison B, Casas-Bedoya A, Ren G, Vu K, Liu Y, Zarifi A, Nguyen T G, Choi D Y, Marpaung D, Madden S J, Mitchell A, Eggleton B J 2017 Optica 4 847

    [25]

    Choudhary A, Morrison B, Aryanfar I, Shahnia S, Pagani M, Liu Y, Vu K, Madden S, Marpaung D, Eggleton B J 2017 J. Lightwave Tech. 35 846

    [26]

    Florea C M, Bashkansky M, Dutton Z, Sanghera J, Pureza P, Aggarwal I 2006 Opt. Express 14 12063

    [27]

    Balram K C, Davanço M I, Song J D, Srinivasan K 2016 Nat. Photonics10 346

    [28]

    Kim Y H, Song K Y 2021 Sensors 21 2168

    [29]

    Feng L Y, Liu Y, He W J, You Y J, Wang L Y, Xu X, Chou X J 2022 Applied Sciences 12 6476

    [30]

    Lin J, Bo F, Cheng Y, Xu J J 2020 Photonics Res. 8 1910

    [31]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics13 664

    [32]

    Cao M, Huang L, Tang M, Mi Y A, Ren W H, Ning T G, Pei L, Ren G B 2022 Opt. Commun.507 127612

    [33]

    Florez O, Jarschel P F, Espinel Y A V, Cordeiro C M B, Alegre T P M, Wiederhecker G S, Dainese P 2016 Nat. Commun. 7 11759

    [34]

    Rakich P T, Reinke C, Camacho R, Davids P, Wang Z 2012 Phys. Rev. X. 2 011008

  • [1] 李佳芮, 乐陶然, 尉昊赟, 李岩. 基于脉冲受激布里渊散射光谱的非接触式黏弹性测量. 物理学报, doi: 10.7498/aps.73.20231974
    [2] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇. 物理学报, doi: 10.7498/aps.72.20231295
    [3] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, doi: 10.7498/aps.70.20210201
    [4] 吴涛, 商景诚, 何兴道, 杨传音. 基于自发瑞利-布里渊散射的氮气体黏滞系数的测量. 物理学报, doi: 10.7498/aps.67.20172438
    [5] 辛成舟, 马健男, 马静, 南策文. 伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应. 物理学报, doi: 10.7498/aps.67.20180810
    [6] 商景诚, 吴涛, 何兴道, 杨传音. 气体自发瑞利-布里渊散射的理论分析及压强反演. 物理学报, doi: 10.7498/aps.67.20171672
    [7] 辛成舟, 马健男, 马静, 南策文. 厚度剪切模式铌酸锂基复合材料的磁电性能优化. 物理学报, doi: 10.7498/aps.66.067502
    [8] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, doi: 10.7498/aps.66.024207
    [9] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性. 物理学报, doi: 10.7498/aps.65.185202
    [10] 侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊. 光子晶体光纤中布里渊散射声波模式特性的分析. 物理学报, doi: 10.7498/aps.61.134206
    [11] 师丽红, 阎文博, 申绪男, 陈贵锋, 陈洪建, 乔会宾, 贾芳芳, 林爱调. 掺铁铌酸锂晶体中光致散射的锂组分和温度依赖关系研究. 物理学报, doi: 10.7498/aps.61.234207
    [12] 赵丽娟. 环境温度宽范围变化对光纤布里渊频移的影响. 物理学报, doi: 10.7498/aps.59.6219
    [13] 夏俊峰, 张冶文, 郑飞虎, 雷清泉. 基于类耿氏效应的低密度聚乙烯中空间电荷包行为的模拟仿真. 物理学报, doi: 10.7498/aps.59.508
    [14] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究. 物理学报, doi: 10.7498/aps.58.4987
    [15] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, doi: 10.7498/aps.58.1731
    [16] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频. 物理学报, doi: 10.7498/aps.57.4991
    [17] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, doi: 10.7498/aps.56.2693
    [18] 闫卫国, 陈云琳, 王栋栋, 郭 娟, 张光寅. 掺镁铌酸锂亚微米结构畴反转的研究. 物理学报, doi: 10.7498/aps.55.5855
    [19] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计. 物理学报, doi: 10.7498/aps.51.565
    [20] 冯少新, 李宝会, 金庆华, 郭振亚, 丁大同. LiNbO3晶体中离子间相互作用势的经验参量的确定. 物理学报, doi: 10.7498/aps.49.2433
计量
  • 文章访问数:  44
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-16

/

返回文章
返回