搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

少模光纤的不同模式布里渊散射特性

张燕君 高浩雷 付兴虎 田永胜

引用本文:
Citation:

少模光纤的不同模式布里渊散射特性

张燕君, 高浩雷, 付兴虎, 田永胜

Characterization of Brillouin scattering in a few-mode fiber

Zhang Yan-Jun, Gao Hao-Lei, Fu Xing-Hu, Tian Yong-Sheng
PDF
导出引用
  • 少模光纤可以传输有限的正交模式,具有模间干涉小、模式易于控制等优点.基于少模光纤的布里渊散射传感器能够有效地减小多参量测量过程中的交叉敏感,实现多物理量的测量.本文基于波动光学理论对阶跃型少模光纤各个模式布里渊散射谱的频移、线宽、峰值增益等参数进行了分析.首先对少模光纤进行了模式分析,其次分析了少模光纤不同模式的频移、线宽、增益的数学模型,以及不同模式叠加的布里渊散射谱频移、线宽、增益.结果表明:少模光纤各模式布里渊散射谱的频移在10.19–10.23 GHz范围内,且随模式阶数的减小而增加;各模式布里渊散射谱的线宽在32–34 MHz,且随模式阶数的减小而增加;各模式布里渊散射增益谱相对幅度因为模式阶数的减小而增大.少模光纤中各个模式布里渊增益谱和多模式联运布里渊增益谱均符合洛伦兹曲线分布,多模式联运导致布里渊增益谱线宽展宽,且多模式联运布里渊增益谱相对振幅一般小于单个模式的布里渊相对振幅.
    The few-mode fiber can be used to transmit limited orthogonal modes, which has the advantages of small modular interference and easily controlled modes. The Brillouin scattering sensor based on the few-mode fiber can effectively reduce the cross sensitivity of multi parameter measurement, and realize the measurement of multi physical quantity. In this paper, based on the wave optics theory, the Brillouin scattering spectrum parameters of the step-index few-mode fiber are analyzed, such as frequency shift, line width and peak gain and so on. Firstly, the transmission modes of the few-mode fiber are analyzed. The finite element analysis result shows that there are 5 kinds of transmission modes:LP01, LP11, LP21, LP02 and LP31, and their effective refractive indexes are 1.4664, 1.4652, 1.4637, 1.4630 and 1.4616, respectively. Secondly, the mathematical models of the Brillouin frequency shift, line width and peak gain of different modes in the few-mode fiber are analyzed. Finally, the parameters of Brillouin scattering spectrum with different modes' superposition are also discussed. In the few-mode fiber, due to the different effective refractive index, the light of each mode is propagated along its respective path and interacts with the particles in the fiber, thus producing different Brillouin scattering spectrum. The simulation results show that the frequency shift of the Brillouin scattering spectrum of each mode is in a range of 10.19-10.23 GHz, and the frequency shift increases with the decrease of the mode order. The Brillouin line width of each mode is in a range of 32-34 MHz, and the line width also increaseswith the decrease of the mode order. Moreover, the relative amplitude of the Brillouin scattering gain spectrum increases with the decrease of the mode order. The mathematical models of this paper are used respectively to analyze the Brillouin scattering spectra of other types of step-index few-mode fibers. It is shown that the Brillouin frequency shift, Brillouin line width and peak gain of other types of step-index few-mode fibers also increase with the decrease of the mode order. In a step-index few-mode fiber, intramodal Brillouin scattering spectrum and the intermodal Brillouin scattering spectrum are both in line with the distribution of Lorenz curve. However, the intermodal Brillouin scattering spectrum of modes' superposition leads to the line width broadening of the Brillouin scattering spectrum, and the relative amplitude of the intermodal Brillouin scattering spectrum of modes' superposition being generally smaller than that of intramodal.
      通信作者: 付兴虎, fuxinghu@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61675176)、河北省自然科学基金(批准号:F2014203125)和燕山大学“新锐工程”人才支持计划资助的课题.
      Corresponding author: Fu Xing-Hu, fuxinghu@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675176), the Natural Science Foundation of Hebei, China (Grant No. F2014203125), and the "Xin Rui Gong Cheng" Talent Project of Yanshan University, China.
    [1]

    Liao Y B 2003 J. Atmosph. Environ. Opt. 16 1 (in Chinese)[廖延彪2003大气与环境光学学报16 1]

    [2]

    Hou J F, Pei L, Li Z X, Liu C 2012 Ele-Optic Technol. Appl. 27 49 (in Chinese)[侯俊芳, 裴丽, 李卓轩, 刘超2012光电技术应用27 49]

    [3]

    Ren C, Zhang S L 2009 Laser Technol. 33 473 (in Chinese)[任成, 张书练2009激光技术33 473]

    [4]

    Hu X D, Liu W H, Hu X T 1999 Aviation Precision Manufacturing Technology 35 28 (in Chinese)[胡晓东, 刘文晖, 胡小唐1999航空精密制造技术35 28]

    [5]

    Cho S B, Lee J J, Kwon I B 2004 Opt. Express 12 4339

    [6]

    Liu D M, Sun Q Z 2009 Laser Optoelect. Prog. 46 29 (in Chinese)[刘德明, 孙琪真2009激光与光电子学进展46 29]

    [7]

    Wait P C, Newson T P 1996 Opt. Commun. 122 141

    [8]

    Dong Y M, Zhang X P, Lu Y G, Liu Y H, Wang S 2007 Acta Opt. Sin. 27 197 (in Chinese)[董玉明, 张旭苹, 路元刚, 刘跃辉, 王顺2007光学学报27 197]

    [9]

    Blake J N, Huang S Y, Kim B Y, Shaw H J 1987 Opt. Lett. 12 732

    [10]

    Ren F, Li J, Hu T, Tang R Z, Yu J Y, Mo Q, He Y Q, Chen Z Y, Li Z B 2015 IEEE Photonics J. 7 7903509

    [11]

    Song K Y, Kim Y H, Kim B Y 2013 Opt. Lett. 38 1805

    [12]

    Song K Y, Kim Y H 2013 Opt. Lett. 38 4841

    [13]

    Cheng G X 2014 Chin. J. Light Scatt. 26 97 (in Chinese)[程光煦2014光散射学报26 97]

    [14]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1

    [15]

    Scarcelli G, Yun S H 2008 Nat. Photonics 2 39

    [16]

    Li Q, Lv Z W, Ha S W L J, Dong Y K, He W M 2006 High Pow. Las. Part. Beam. 18 1481 (in Chinese)[李强, 吕志伟, 哈斯乌力吉, 董永康, 何伟明2006强激光与粒子束18 1481]

    [17]

    Boyd R W 1992 Nonlinear Optics (New York:Academic press) pp347-349

    [18]

    Song K Y, Abedin K S, Hotate K, González H M, Thévenaz L 2006 Opt. Express 14 5860

    [19]

    Geng P J, Xu J D, Wei G, Guo C J, Li Y 2002 J. Test and Measurement Technology 16 87 (in Chinese)[耿军平, 许家栋, 韦高, 郭陈江, 李焱2002测试技术学报16 87]

    [20]

    Garcus D, Gogolla T, Krebber K, Schliep F 1997 J. Lightwave Technol. 15 654

    [21]

    Kovalev V I, Harrison R G 2002 Opt. Lett. 27 2022

    [22]

    Sorin W V, Kim B Y, Shaw H J 1986 Opt. Lett. 11 106

  • [1]

    Liao Y B 2003 J. Atmosph. Environ. Opt. 16 1 (in Chinese)[廖延彪2003大气与环境光学学报16 1]

    [2]

    Hou J F, Pei L, Li Z X, Liu C 2012 Ele-Optic Technol. Appl. 27 49 (in Chinese)[侯俊芳, 裴丽, 李卓轩, 刘超2012光电技术应用27 49]

    [3]

    Ren C, Zhang S L 2009 Laser Technol. 33 473 (in Chinese)[任成, 张书练2009激光技术33 473]

    [4]

    Hu X D, Liu W H, Hu X T 1999 Aviation Precision Manufacturing Technology 35 28 (in Chinese)[胡晓东, 刘文晖, 胡小唐1999航空精密制造技术35 28]

    [5]

    Cho S B, Lee J J, Kwon I B 2004 Opt. Express 12 4339

    [6]

    Liu D M, Sun Q Z 2009 Laser Optoelect. Prog. 46 29 (in Chinese)[刘德明, 孙琪真2009激光与光电子学进展46 29]

    [7]

    Wait P C, Newson T P 1996 Opt. Commun. 122 141

    [8]

    Dong Y M, Zhang X P, Lu Y G, Liu Y H, Wang S 2007 Acta Opt. Sin. 27 197 (in Chinese)[董玉明, 张旭苹, 路元刚, 刘跃辉, 王顺2007光学学报27 197]

    [9]

    Blake J N, Huang S Y, Kim B Y, Shaw H J 1987 Opt. Lett. 12 732

    [10]

    Ren F, Li J, Hu T, Tang R Z, Yu J Y, Mo Q, He Y Q, Chen Z Y, Li Z B 2015 IEEE Photonics J. 7 7903509

    [11]

    Song K Y, Kim Y H, Kim B Y 2013 Opt. Lett. 38 1805

    [12]

    Song K Y, Kim Y H 2013 Opt. Lett. 38 4841

    [13]

    Cheng G X 2014 Chin. J. Light Scatt. 26 97 (in Chinese)[程光煦2014光散射学报26 97]

    [14]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1

    [15]

    Scarcelli G, Yun S H 2008 Nat. Photonics 2 39

    [16]

    Li Q, Lv Z W, Ha S W L J, Dong Y K, He W M 2006 High Pow. Las. Part. Beam. 18 1481 (in Chinese)[李强, 吕志伟, 哈斯乌力吉, 董永康, 何伟明2006强激光与粒子束18 1481]

    [17]

    Boyd R W 1992 Nonlinear Optics (New York:Academic press) pp347-349

    [18]

    Song K Y, Abedin K S, Hotate K, González H M, Thévenaz L 2006 Opt. Express 14 5860

    [19]

    Geng P J, Xu J D, Wei G, Guo C J, Li Y 2002 J. Test and Measurement Technology 16 87 (in Chinese)[耿军平, 许家栋, 韦高, 郭陈江, 李焱2002测试技术学报16 87]

    [20]

    Garcus D, Gogolla T, Krebber K, Schliep F 1997 J. Lightwave Technol. 15 654

    [21]

    Kovalev V I, Harrison R G 2002 Opt. Lett. 27 2022

    [22]

    Sorin W V, Kim B Y, Shaw H J 1986 Opt. Lett. 11 106

  • [1] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [2] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [3] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器. 物理学报, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [4] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [5] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [6] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器. 物理学报, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [7] 吴涛, 商景诚, 何兴道, 杨传音. 基于自发瑞利-布里渊散射的氮气体黏滞系数的测量. 物理学报, 2018, 67(7): 077801. doi: 10.7498/aps.67.20172438
    [8] 商景诚, 吴涛, 何兴道, 杨传音. 气体自发瑞利-布里渊散射的理论分析及压强反演. 物理学报, 2018, 67(3): 037801. doi: 10.7498/aps.67.20171672
    [9] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究. 物理学报, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [10] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究. 物理学报, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [11] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计. 物理学报, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [12] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [13] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析. 物理学报, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [14] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明. 基于少模光纤的模分复用系统多输入多输出均衡与解调 . 物理学报, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [15] 高玮, 刘胜男, 毕雅凤, 胡晓博, 浦绍质, 赵洪. 液芯光纤中基于多线抽运调制的带宽可控平顶布里渊增益谱. 物理学报, 2013, 62(19): 194206. doi: 10.7498/aps.62.194206
    [16] 侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊. 光子晶体光纤中布里渊散射声波模式特性的分析. 物理学报, 2012, 61(13): 134206. doi: 10.7498/aps.61.134206
    [17] 赵丽娟. 环境温度宽范围变化对光纤布里渊频移的影响. 物理学报, 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [18] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [19] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频. 物理学报, 2008, 57(8): 4991-4994. doi: 10.7498/aps.57.4991
    [20] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
计量
  • 文章访问数:  4617
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-13
  • 修回日期:  2016-10-18
  • 刊出日期:  2017-01-20

少模光纤的不同模式布里渊散射特性

  • 1. 燕山大学信息科学与工程学院, 河北省特种光纤与光纤传感重点实验室, 秦皇岛 066004
  • 通信作者: 付兴虎, fuxinghu@ysu.edu.cn
    基金项目: 国家自然科学基金(批准号:61675176)、河北省自然科学基金(批准号:F2014203125)和燕山大学“新锐工程”人才支持计划资助的课题.

摘要: 少模光纤可以传输有限的正交模式,具有模间干涉小、模式易于控制等优点.基于少模光纤的布里渊散射传感器能够有效地减小多参量测量过程中的交叉敏感,实现多物理量的测量.本文基于波动光学理论对阶跃型少模光纤各个模式布里渊散射谱的频移、线宽、峰值增益等参数进行了分析.首先对少模光纤进行了模式分析,其次分析了少模光纤不同模式的频移、线宽、增益的数学模型,以及不同模式叠加的布里渊散射谱频移、线宽、增益.结果表明:少模光纤各模式布里渊散射谱的频移在10.19–10.23 GHz范围内,且随模式阶数的减小而增加;各模式布里渊散射谱的线宽在32–34 MHz,且随模式阶数的减小而增加;各模式布里渊散射增益谱相对幅度因为模式阶数的减小而增大.少模光纤中各个模式布里渊增益谱和多模式联运布里渊增益谱均符合洛伦兹曲线分布,多模式联运导致布里渊增益谱线宽展宽,且多模式联运布里渊增益谱相对振幅一般小于单个模式的布里渊相对振幅.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回