搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

少模光纤的弯曲损耗研究

郑兴娟 任国斌 黄琳 郑鹤玲

引用本文:
Citation:

少模光纤的弯曲损耗研究

郑兴娟, 任国斌, 黄琳, 郑鹤玲

Study on bending losses of few-mode optical fibers

Zheng Xing-Juan, Ren Guo-Bin, Huang Lin, Zheng He-Ling
PDF
导出引用
  • 随着光纤通信容量的不断增加, 基于少模光纤的模分复用技术由于其多信道复用、 高频谱效率及低非线性效应成为目前提高光纤通信容量的研究热点. 本文推导得到了适用于少模光纤中高阶模式弯曲损耗的计算公式, 系统研究了下陷层辅助弯曲不敏感抛物线型少模光纤的主要参数(包括芯层半径、芯层到下陷层距离、下陷层宽度及下陷层折射率差)对其弯曲损耗特性的影响. 研究表明: 对于少模光纤, 模式阶数越高, 光纤的弯曲敏感性越高; 随纤芯与下陷层间距离的变化, 光纤各阶模式的弯曲损耗均存在一个最小值. 本文结论对弯曲不敏感少模光纤的设计、制造及少模光纤弯曲性能优化具有指导意义.
    With the rapid increase of the capacity of optical fiber transmission system, the mode division multiplexing (MDM) transmission system using few-mode fibers (FMFs) (which provides the multi-channel multiplexing, high efficiency of frequency spectrum, and low nonlinear effects) becomes a research focus to upgrade the capacity of the optical communication. In this paper, an analytical expression of bending loss for each high-order mode of parabolic-index FMFs is deduced based on the perturbation theory and verified by finite element method. Based on this expression, the influence of four key structure parameters of trench-assisted parabolic-index FMFs: i.e. the radius of fiber core, the distance between core and trench, the width of trench, and the refractive index difference of trench, on the bending loss performance are discussed in detail. It is found that, firstly, the sensitivity of the bending loss increases with the increase of mode order of FMFs. Secondly, the smaller the core radius, the smaller the bending loss of each mode-order is, since small core radius leads to a smaller effective mode area, which is beneficial for saving power leakage. Additionally, the effective mode area of LP02 mode is lower than that of LP21 mode, while the bending loss of LP02 mode is higher than that of LP21 mode, this observation is different from other mode-orders. Thirdly, an optimized distance between trench and core for each high-order mode is also investigated for obtaining minimum bending loss, which plays an important role in controlling the bending performance of FMFs. So the higher the mode-order, the smaller the optimized distance between core and trench is, and this observation could be used to optimize the bending loss of the fiber. With the increase of the distance between the core and trench, the effective mode area of high-order mode increases quickly at first, then it is approximately unaltered. The distance between the core and trench is a key factor that influences both the bending loss and the effective mode area of each mode. Finally, the bending loss of each mode decreases with the increase of the width of trench around the fiber core or the refractive index difference of trench. These results are helpful for understanding the mechanism of bending loss for FMFs and are of significance for designing and manufacturing of few-mode bend-insensitive fibers, especially for the optimization of the bending loss of specific high-order mode.
      通信作者: 任国斌, gbren@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61178008)和中央高校基本科研业务费专项基金(批准号: 2011RC050)资助的课题.
      Corresponding author: Ren Guo-Bin, gbren@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178008), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2011RC050).
    [1]

    Desurvire E B 2006 J. Lightwave Technol. 24 4697

    [2]

    Morioka T 2009 Proceedings of the 14th Opto-Electronics and Communications Conference Hong Kong, China, July 13-17, 2009 p1

    [3]

    Yan L S, Liu X, Shieh W 2011 IEEE Photon. J. 3 325

    [4]

    Essiambre R J, Kramer G, Winzer P, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662

    [5]

    Xie Y W, Fu S N, Zhang H L, Tang M, Shen P, Liu D M 2013 Acta Opt. Sin. 9 09060101 (in Chinese) [谢意维, 付松年, 张海亮, 唐明, 沈平, 刘德明 2013 光学学报 9 09060101]

    [6]

    Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]

    [7]

    Marcuse D 1976 J. Opt. Soc. Am. 66 311

    [8]

    Watekar P R, Ju S, Yoon Y S, Lee Y S, Han W T 2008 Opt. Express 16 13545

    [9]

    Watekar P R, Ju S, Htein L, Han W T 2010 Opt. Express 18 13761

    [10]

    Goto Y, Nakajima K, Kurashima T 2012 Proceeding of the 17th Opto-electronics and Communications Conference (OECC) BuSan, July 2-6, 2012 p813

    [11]

    Lin Z 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [林桢2007博士学位论文 (北京:北京交通大学)]

    [12]

    Li H S, Ren G B, Gao Y X, Lian Y D, Cao M, Jian S S 2015 IEEE Photon. Technol. Lett. 27 1293

    [13]

    Jiang S S, Liu Y, Xing E J 2015 Acta Phys. Sin. 64 064212 (in Chinese) [姜姗姗, 刘艳, 邢尔军 2015 物理学报 64 064212]

    [14]

    Schulze C, Lorenz A, Flamm D, Hartung A, Schrter S, Bartelt H, Duparr M 2013 Opt. Express 21 3170

    [15]

    Lars G N, Sun Y, Nicholson J W, Jakobsen D, Jespersen K G, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693

    [16]

    Denis D 2009 Opt. Express 17 22081

    [17]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese) [林桢, 郑斯文, 任国斌, 简水生 2013 物理学报 62 064214]

    [18]

    Faustini L, Martini G 1997 J. Lightwave Technol. 15 671

    [19]

    Wang Q, Farrell G, Feir T 2005 Opt. Express 13 4476

    [20]

    Vassallo C 1985 Opt. Quantum. Electron 17 201

    [21]

    Vassallo C 1985 J. Lightwave Technol. LT-3 416

    [22]

    Li H S, Ren G B, Yin B, Lian Y D, Bai Y L, Jian W, Jian S S 2015 Opt. Common. 352 84

    [23]

    Hagen R 1992 J. Lightwave Technol. 10 543

    [24]

    Ren G B, Lin Z, Zheng SW, Jian S S 2013 Opt. Lett. 38 781

    [25]

    Zhang Z Y, Ren G B, Zhou D A, Wu J L 2014 Laser Opt. Electron. Prog. 51 78 (in Chinese) [张子阳, 任国斌, 周定安, 吴家梁 2014 激光与光电子学进展 51 78]

    [26]

    Schermer R T, Cole J H 2007 IEEE J. Quantum. Electron 43 899

  • [1]

    Desurvire E B 2006 J. Lightwave Technol. 24 4697

    [2]

    Morioka T 2009 Proceedings of the 14th Opto-Electronics and Communications Conference Hong Kong, China, July 13-17, 2009 p1

    [3]

    Yan L S, Liu X, Shieh W 2011 IEEE Photon. J. 3 325

    [4]

    Essiambre R J, Kramer G, Winzer P, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662

    [5]

    Xie Y W, Fu S N, Zhang H L, Tang M, Shen P, Liu D M 2013 Acta Opt. Sin. 9 09060101 (in Chinese) [谢意维, 付松年, 张海亮, 唐明, 沈平, 刘德明 2013 光学学报 9 09060101]

    [6]

    Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215]

    [7]

    Marcuse D 1976 J. Opt. Soc. Am. 66 311

    [8]

    Watekar P R, Ju S, Yoon Y S, Lee Y S, Han W T 2008 Opt. Express 16 13545

    [9]

    Watekar P R, Ju S, Htein L, Han W T 2010 Opt. Express 18 13761

    [10]

    Goto Y, Nakajima K, Kurashima T 2012 Proceeding of the 17th Opto-electronics and Communications Conference (OECC) BuSan, July 2-6, 2012 p813

    [11]

    Lin Z 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [林桢2007博士学位论文 (北京:北京交通大学)]

    [12]

    Li H S, Ren G B, Gao Y X, Lian Y D, Cao M, Jian S S 2015 IEEE Photon. Technol. Lett. 27 1293

    [13]

    Jiang S S, Liu Y, Xing E J 2015 Acta Phys. Sin. 64 064212 (in Chinese) [姜姗姗, 刘艳, 邢尔军 2015 物理学报 64 064212]

    [14]

    Schulze C, Lorenz A, Flamm D, Hartung A, Schrter S, Bartelt H, Duparr M 2013 Opt. Express 21 3170

    [15]

    Lars G N, Sun Y, Nicholson J W, Jakobsen D, Jespersen K G, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693

    [16]

    Denis D 2009 Opt. Express 17 22081

    [17]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese) [林桢, 郑斯文, 任国斌, 简水生 2013 物理学报 62 064214]

    [18]

    Faustini L, Martini G 1997 J. Lightwave Technol. 15 671

    [19]

    Wang Q, Farrell G, Feir T 2005 Opt. Express 13 4476

    [20]

    Vassallo C 1985 Opt. Quantum. Electron 17 201

    [21]

    Vassallo C 1985 J. Lightwave Technol. LT-3 416

    [22]

    Li H S, Ren G B, Yin B, Lian Y D, Bai Y L, Jian W, Jian S S 2015 Opt. Common. 352 84

    [23]

    Hagen R 1992 J. Lightwave Technol. 10 543

    [24]

    Ren G B, Lin Z, Zheng SW, Jian S S 2013 Opt. Lett. 38 781

    [25]

    Zhang Z Y, Ren G B, Zhou D A, Wu J L 2014 Laser Opt. Electron. Prog. 51 78 (in Chinese) [张子阳, 任国斌, 周定安, 吴家梁 2014 激光与光电子学进展 51 78]

    [26]

    Schermer R T, Cole J H 2007 IEEE J. Quantum. Electron 43 899

  • [1] 惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民. 基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤. 物理学报, 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [3] 张媛, 姜文帆, 陈明阳. 低串扰低弯曲损耗环形芯少模多芯光纤的设计. 物理学报, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [4] 郑斯文, 刘亚卓, 罗晓玲, 王丽辉, 张娜, 张晶晶, 金传洋, 徐丙立, 屈强, 陈玲. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析. 物理学报, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [5] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器. 物理学报, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [6] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [7] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器. 物理学报, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [8] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究. 物理学报, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [9] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [10] 靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生. 环绕空气孔结构的双模大模场面积多芯光纤的特性分析. 物理学报, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [11] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计. 物理学报, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [12] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [13] 廖文英, 范万德, 李园, 陈君, 卜凡华, 李海鹏, 王新亚, 黄鼎铭. 新型全固态准晶体结构大模场光纤特性研究. 物理学报, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [14] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [15] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [16] 盛新志, 娄淑琴, 尹国路, 鹿文亮, 王鑫. 一种与标准单模光纤高适配的低弯曲损耗光子晶体光纤. 物理学报, 2013, 62(10): 104217. doi: 10.7498/aps.62.104217
    [17] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明. 基于少模光纤的模分复用系统多输入多输出均衡与解调. 物理学报, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [18] 郑斯文, 林桢, 任国斌, 简水生. 一种新型多芯-双模-大模场面积光纤的设计和分析. 物理学报, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [19] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析. 物理学报, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [20] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计. 物理学报, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
计量
  • 文章访问数:  8528
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 修回日期:  2015-12-01
  • 刊出日期:  2016-03-05

/

返回文章
返回