搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于少模长周期光纤叠栅的模式转换器

薛艳茹 田朋飞 金娃 赵能 靳云 毕卫红

引用本文:
Citation:

基于少模长周期光纤叠栅的模式转换器

薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红

Superimposed long period gratings based mode converter in few-mode fiber

Xue Yan-Ru, Tian Peng-Fei, Jin Wa, Zhao Neng, Jin Yun, Bi Wei-Hong
PDF
HTML
导出引用
  • 本文提出一种在同一段少模光纤上写入两个不同周期${\varLambda _1}$${\varLambda _2}$的长周期光纤光栅构成叠栅的方法, 实现了纤芯基模LP01向高阶纤芯模LP11模式转换的宽带宽的新型的全光纤模式转换器. 利用有限元法和耦合模理论建立了模式转换器的理论分析模型. 数值仿真分析了叠栅中两个子光栅周期间隔、光栅长度、耦合系数等光栅参数对模式转换器的影响. 仿真分析和实验结果表明, 通过改变两个子光栅的周期间隔来改变两个损耗峰的位置, 形成一个损耗峰, 从而可以实现宽带宽的模式转换器, 其10 dB带宽约是单栅的2倍. 与传统的模式转换器相比, 该转换器带宽宽、转换效率高, 尺寸小、抗干扰能力强, 可以在模分复用系统和光通信中得到广泛的应用.
    Mode-division multiplexing (MDM), as one of the promising techniques for overcoming current limitation of transmission capacity in single-mode fibers (SMFs), has attracted considerable attention. A key component in the MDM system is a mode converter, which makes conversion between the fundamental mode and the higher-order mode. Many mode converters have been demonstrated, such as spatial light modulators, phase plates, silicon-based asymmetrical directional couplers, fiber-based photonic lantern, and long period fiber grating (LPFG). Compared with other methods, mode converter used LPFG is a very feasible technique, which has the advantages of small size, low loss, low backward noise, high coupling efficiency and easy fabrication. However, the limitation of the mode converter is relatively narrow bandwidth. In this paper, a novel broadband all-fiber mode converter is proposed, in which two long period fiber gratings (LPFGs) with different periods are fabricated in the same spatial domain of few-mode fiber to achieve coupling from LP01 to LP11, thus forming superimposed long period fiber gratings (SLPFGs). The influences of grating parameters, such as the interval between two periods, the length of grating and the coupling coefficient on the mode converter, are analyzed by numerical simulation. It is found that the gap between the two resonant wavelengths becomes smaller with the periodic interval decreasing, which can form one rejection band when the gap is small enough, thus a broadband mode converter can be realized. The corresponding bandwidth at a conversion efficiency of 10 dB is about twice that of traditional LPFG. Moreover, with the increase of grating length, the conversion efficiency first increases and then decreases, because coupling efficiency experiences deficient coupling, full coupling and over coupling. The effect of coupling coefficient on converter is similar to that of grating length. According to the numerical results, grating I is fabricated with ${\varLambda _1} = 673\;{\text{μ}}{\rm m} $, 35-period. After that, the platform is rotated 180° and grating II is fabricated with ${\varLambda _2} = 688\; {\text{μ}}{\rm m}$, 35-period by CO2 laser in tow mode fiber (TMF steped-index fiber). The bandwidths of both LPFGs at a conversion efficiency of 10 dB are about 57 nm and 67 nm respectively, while the bandwidth of SLPFG is about 153 nm. The experimental results are in pretty good agreement with the theoretical analyses. In addition, the proposed superimposed structure can also be extended to the conversion of fundamental mode into other high-order core modes. By designing the period of two sub-gratings reasonably, a wide band rejection filter with arbitrary wavelength can be realized. Compared with the traditional mode converter, the converter has the advantages of broad bandwidth, high conversion efficiency and small size, which can be widely used in the mode division multiplexing system and optical communication.
      通信作者: 毕卫红, whbi@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61475133, 61575170, 61605168)、河北省自然科学基金(批准号: F2016203392)、河北省应用基础研究计划重点基础研究项目(批准号: 16961701D)、河北省高等学校科学技术研究基金(批准号: QN2016078)和燕山大学校内博士基金(批准号: B1011)资助的课题.
      Corresponding author: Bi Wei-Hong, whbi@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475133, 61575170, 61605168), the Natural Science Foundation of Hebei Province, China (Grant No. F2016203392), the Key Basic Research Program of Hebei Province, China (Grant No. 16961701D), College and University Science and Technology Research Project of Hebei Province, China (Grant No. QN2016078), and the Intramural Doctoral Foundation of Yanshan University, China (Grant No. B1011).
    [1]

    Goebel B, Foschini G J, Kramer G, Essiambre R, Winzer P J, Essiambre R 2010 J. Lightwave Technol. 28 662Google Scholar

    [2]

    Fernandes G M, Muga N J, Pinto A N 2017 Opt. Express 25 3899Google Scholar

    [3]

    Zhao Y H, Liu Y Q, Zhang L, Zhang C Y, Wen J X, Wang T Y 2016 Opt. Express 24 6186Google Scholar

    [4]

    Salsi M, Koebele C, Sperti D, Tran P, Mardoyan H, Brindel P, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Charlet G 2012 J. Lightwave Technol. 30 618Google Scholar

    [5]

    Von H J, Ryf R, Winzer P 2013 Opt. Express 21 18097Google Scholar

    [6]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Lightwave Technol. 30 521Google Scholar

    [7]

    Montero-Orille C, Moreno V, Prieto-Blanco X, Mateo E F, Ip E, Crespo J, Linares J 2013 Appl. Optics 52 2332Google Scholar

    [8]

    Dong J, Chiang K S, Jin W 2015 Opt. Lett. 40 3125Google Scholar

    [9]

    Dong J, Chiang K S, Jin W 2015 J. Lightwave Technol. 33 4580Google Scholar

    [10]

    Sai X, Li Y, Yang C, Li W, Qiu J, Hong X, Zuo Y, Guo H, Tong W, Wu J 2017 Opt. Lett. 42 4355Google Scholar

    [11]

    Leon-Saval S G, Fontaine N K, Salazar-Gil J R, Ercan B, Ryf R, Bland-Hawthorn J 2014 Opt. Express. 22 1036Google Scholar

    [12]

    Ali M M, Jung Y, Lim K S, Islam M R, Alam S U, Richardson D J, Ahmad H 2015 IEEE Photonics Technol. Lett. 27 1713Google Scholar

    [13]

    Savin S, Digonnet M J, Kino J S, Shaw H J 2000 Opt. Lett. 25 710Google Scholar

    [14]

    Ramachandran S, Wang Z Y, Yan M 2002 Opt. Lett. 27 698Google Scholar

    [15]

    Liao C R, Wang Y, Wang D N, Jin L 2010 IEEE Photonics Technol. Lett. 22 425Google Scholar

    [16]

    Dong J L, Chiang K S 2015 IEEE Photonics Technol. Lett. 27 1006Google Scholar

    [17]

    Wang B, Zhang W G, Bai Z Y, Wang L, Zhang L Y, Zhou Q, Chen L, Yan T Y 2015 IEEE Photonics Technol. Lett. 27 145Google Scholar

    [18]

    Zhao Y H, Liu Y Q, Zhang C Y, Zhang L, Zheng G J, Mou C B, Wen J X, Wang T Y 2017 Opt. Lett. 42 4708Google Scholar

    [19]

    Garg R, Thyagarajan K 2013 Opt. Fiber Technol. 19 148Google Scholar

    [20]

    江鹏 2016 博士学位论文(秦皇岛: 燕山大学)

    Jiang P 2016 Ph.D. Dissertation (Qinhuangdao: Yanshan University) (in Chinese)

  • 图 1  模式转换器的结构图

    Fig. 1.  Schematic of mode converter.

    图 2  少模光纤的模式色散特性

    Fig. 2.  Effective refractive indices against wavelength of two modes.

    图 3  少模光纤光栅周期与谐振波长的关系

    Fig. 3.  Dependence of grating period and resonant wavelength in few mode fiber.

    图 4  单栅与叠栅光谱对比

    Fig. 4.  Spectrum contrast between LPFG and SLPFG.

    图 5  不同周期的叠栅仿真

    Fig. 5.  Simulated SLPFG for different periods.

    图 6  不同光栅长度的叠栅仿真

    Fig. 6.  Simulated SLPFG for different grating lengths.

    图 7  不同耦合系数的叠栅仿真

    Fig. 7.  Simulated SLPFG for different coupling coefficient.

    图 8  少模光纤叠栅的实验制备系统

    Fig. 8.  Experiment setup for TMF-SLPFG.

    图 9  单栅和叠栅的实验光谱图

    Fig. 9.  Experimental spectrum of LPFG and SLPFG.

    图 10  模场观测装置

    Fig. 10.  Schematic of mode profile observation.

    图 11  不同波长处的模场图 (a) 1400 nm; (b)1486 nm; (c) 1550 nm

    Fig. 11.  Images of mode profiles located at different wavelength: (a) 1400 nm; (b) 1486 nm; (c) 1550 nm.

  • [1]

    Goebel B, Foschini G J, Kramer G, Essiambre R, Winzer P J, Essiambre R 2010 J. Lightwave Technol. 28 662Google Scholar

    [2]

    Fernandes G M, Muga N J, Pinto A N 2017 Opt. Express 25 3899Google Scholar

    [3]

    Zhao Y H, Liu Y Q, Zhang L, Zhang C Y, Wen J X, Wang T Y 2016 Opt. Express 24 6186Google Scholar

    [4]

    Salsi M, Koebele C, Sperti D, Tran P, Mardoyan H, Brindel P, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Charlet G 2012 J. Lightwave Technol. 30 618Google Scholar

    [5]

    Von H J, Ryf R, Winzer P 2013 Opt. Express 21 18097Google Scholar

    [6]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Lightwave Technol. 30 521Google Scholar

    [7]

    Montero-Orille C, Moreno V, Prieto-Blanco X, Mateo E F, Ip E, Crespo J, Linares J 2013 Appl. Optics 52 2332Google Scholar

    [8]

    Dong J, Chiang K S, Jin W 2015 Opt. Lett. 40 3125Google Scholar

    [9]

    Dong J, Chiang K S, Jin W 2015 J. Lightwave Technol. 33 4580Google Scholar

    [10]

    Sai X, Li Y, Yang C, Li W, Qiu J, Hong X, Zuo Y, Guo H, Tong W, Wu J 2017 Opt. Lett. 42 4355Google Scholar

    [11]

    Leon-Saval S G, Fontaine N K, Salazar-Gil J R, Ercan B, Ryf R, Bland-Hawthorn J 2014 Opt. Express. 22 1036Google Scholar

    [12]

    Ali M M, Jung Y, Lim K S, Islam M R, Alam S U, Richardson D J, Ahmad H 2015 IEEE Photonics Technol. Lett. 27 1713Google Scholar

    [13]

    Savin S, Digonnet M J, Kino J S, Shaw H J 2000 Opt. Lett. 25 710Google Scholar

    [14]

    Ramachandran S, Wang Z Y, Yan M 2002 Opt. Lett. 27 698Google Scholar

    [15]

    Liao C R, Wang Y, Wang D N, Jin L 2010 IEEE Photonics Technol. Lett. 22 425Google Scholar

    [16]

    Dong J L, Chiang K S 2015 IEEE Photonics Technol. Lett. 27 1006Google Scholar

    [17]

    Wang B, Zhang W G, Bai Z Y, Wang L, Zhang L Y, Zhou Q, Chen L, Yan T Y 2015 IEEE Photonics Technol. Lett. 27 145Google Scholar

    [18]

    Zhao Y H, Liu Y Q, Zhang C Y, Zhang L, Zheng G J, Mou C B, Wen J X, Wang T Y 2017 Opt. Lett. 42 4708Google Scholar

    [19]

    Garg R, Thyagarajan K 2013 Opt. Fiber Technol. 19 148Google Scholar

    [20]

    江鹏 2016 博士学位论文(秦皇岛: 燕山大学)

    Jiang P 2016 Ph.D. Dissertation (Qinhuangdao: Yanshan University) (in Chinese)

  • [1] 惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民. 基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤. 物理学报, 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器. 物理学报, 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [3] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [4] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器. 物理学报, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [5] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [6] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究. 物理学报, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [7] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [8] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究. 物理学报, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [9] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计. 物理学报, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [10] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [11] 王冬, 徐莎, 曹延伟, 秦奋. 光子晶体高功率微波模式转换器设计. 物理学报, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [12] 王强, 周海京, 杨春, 李彪, 何晓阳. 过模波导器件的迭代设计方法. 物理学报, 2013, 62(11): 115204. doi: 10.7498/aps.62.115204
    [13] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析. 物理学报, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [14] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明. 基于少模光纤的模分复用系统多输入多输出均衡与解调. 物理学报, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [15] 崔健, 罗积润, 朱敏, 郭炜. 休斯结构多间隙耦合腔的稳定性分析. 物理学报, 2011, 60(6): 061101. doi: 10.7498/aps.60.061101
    [16] 崔健, 罗积润, 朱敏, 郭炜. 多间隙耦合腔中注-波同步与耦合. 物理学报, 2011, 60(5): 051101. doi: 10.7498/aps.60.051101
    [17] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析. 物理学报, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [18] 孙 旭, 赵 青, 李宏福. 宽带非均匀半径渐变TE0n-TE0(n+1)模式转换器的设计研究. 物理学报, 2008, 57(4): 2130-2135. doi: 10.7498/aps.57.2130
    [19] 钱 郁, 宋宣玉, 时 伟, 陈光旨, 薛 郁. 可激发介质湍流的耦合同步及控制. 物理学报, 2006, 55(9): 4420-4427. doi: 10.7498/aps.55.4420
    [20] 王铁邦, 覃团发, 陈光旨. 超混沌系统的耦合同步. 物理学报, 2001, 50(10): 1851-1855. doi: 10.7498/aps.50.1851
计量
  • 文章访问数:  9019
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-08
  • 修回日期:  2018-11-08
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回