搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性光纤环形镜的少模脉冲幅度调制再生器

王瑜浩 武保剑 郭飚 文峰 邱昆

引用本文:
Citation:

基于非线性光纤环形镜的少模脉冲幅度调制再生器

王瑜浩, 武保剑, 郭飚, 文峰, 邱昆

Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror

Wang Yu-Hao, Wu Bao-Jian, Guo Biao, Wen Feng, Qiu Kun
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着网络带宽需求的快速增加, 波分复用系统的容量已接近非线性香农极限. 为了适应未来网络的发展, 空分复用技术引起了越来越多的关注. 本文首次提出基于少模非线性光纤环形镜(FM-NOLM)的脉冲幅度调制(PAM)全光再生器, 描述了其工作原理和具体设计过程. 采用COMSOL软件对组成FM-NOLM的硫化物高非线性光纤进行了模式特性仿真. 以LP01, LP11, LP21三个光纤模式为例, 确定了再生器的参数, 计算出每个模式的功率转移函数曲线. 仿真分析了该少模PAM-4全光再生器的噪声抑制(NRR)性能, 并与单模情形进行了比较. 研究表明, 1)对于每个空间模式的PAM信号, 所有再生电平具有一致的功率转移性能; 2)当输入信噪比(SNR)约大于20 dB时, 三种模式的噪声抑制比均可超过3 dB, 并随着输入信噪比线性增加, 其斜率约为1.2; 3)在相同输入SNR条件下, 三种模式的噪声抑制比相差不大, 不超过1.1 dB. 为了说明再生器的再生性能, 当输入SNR为25 dB时, 我们还给出了再生前后PAM-4信号的功率分布直方图. 与现有的再生方案相比, 本文方案的均匀多电平再生转移性能, 使其更适合高频谱效率的长距空分复用系统和任意电平数的PAM信号再生. 此外, 该方案也能够扩展到波长域, 有效提高光通信系统的传输容量.
    In recent years, the demand for network bandwidth has increased significantly, and the capacity of wave division multiplexing (WDM) systems has reached the nonlinear Shannon limit. In order to adapt to the development of future networks, space division multiplexing (SDM) technology attracts more and more attention. In this paper, we put forward a novel structure of pulse amplitude modulation(PAM) regenerator based on few-mode nonlinear optical fiber loop mirror (FM-NOLM) for the first time, and theoretically analyze the working principle for few-mode reshaping. It can regenerate degraded PAM signals and improve transmission performance in SDM system. The detailed design steps of the regenerator are given, in which the sulfide highly nonlinear fiber and multimode coupler are used to build up the FM-NOLM and their mode characteristics are simulated by COMSOL software. The parameters of the regenerator are determined by taking the few-mode optical fiber supporting LP01, LP11, and LP21 modes as an example, and then the power transfer function (PTF) curve of each mode for PAM signals is calculated. We simulate and analyze the noise reduction ratio (NRR) performance of the few-mode regenerator for PAM-4 signals, and compare with the case of single mode fiber. Our simulation shows that: (1) for each spatial mode of PAM signal, all regenerative levels have the same consistent power transfer performance; (2) for the input signal-to-noise ratio (SNR) greater than 20 dB, the NRR for each mode can exceed 3 dB, and increase with the input SNR at the slope of about 1.2; (3) the NRR difference between the three modes is less than 1.1 dB for the same input SNR. In order to illustrate the reshaping function of the regenerator, we also present the power distribution histograms for PAM-4 signals before and after regeneration when the input SNR is 25 dB. This scheme proposed here has some advantages over the existing regenerators in the applicability for the long-haul SDM system with high spectral efficiency and regeneration of any level number of PAM signals in theory due to its uniform multi-level regeneration function, but also is capable of being extended to the wavelength domain for higher transmission capacity.
      通信作者: 武保剑, bjwu@uestc.edu.cn
    • 基金项目: 国家级-国家重点研发计划(2018YFB1801003)
      Corresponding author: Wu Bao-Jian, bjwu@uestc.edu.cn
    [1]

    Berdague S, Facq P 1982 Appl. Opt. 21 1950Google Scholar

    [2]

    Ryf R, Randel S, Fontaine N K, Palou X 2013 39th European Conference and Exhibition on Optical Communication London, UK, September 22–26, 2013 We2 D.1

    [3]

    Sakamoto T, Saitoh K, Saitoh S, Abe Y, Takenaga K, Urushibara A, Wada M, Matsui T, Aikawa K, Nakajima K 2018 44th European Conference and Exhibition on Optical Communication Roma, Italy, September 23–27, 2018 p1

    [4]

    Filipe M F, Costa S C, Sygletos S, Ellis A D 2019 J. Lightwave Technol. 37 989Google Scholar

    [5]

    Rademacher G, Luis R S, Puttnam B J, Maruyama R, Aikawa K, Awaji Y, Furukawa H, Petermann K, Wada N 2019 J. Lightwave Technol. 37 1273Google Scholar

    [6]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R, Winzer P J, Peckham D W, Mccurdy A H, Lingle R 2012 J. Lightwave Technol. 30 521

    [7]

    Sidelnikov G, Redyuk A, Ferreira F, Sygletos S 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics ConferenceMunich, Germany, June 25−29, 2017 p1

    [8]

    Tavares J S, Pessoa L M, Salgado H M 2017 J. Lightwave Technol. 35 4072Google Scholar

    [9]

    Ip E, Li M J, BennettK, Huang Y K, TanakaA, KorolevA, KoreshkovK, Wo od, William, MateoE, Hu J Q, YanoY 2014 J. Lightwave Technol. 32 790Google Scholar

    [10]

    Mamyshev P V 1998 24th European Conference on Optical Communication Madrid, Spain, September 20−24, 1998 p475

    [11]

    Kakande J, Bogris A, Slavik R, Parmigiani F, Syvridis D, Petropoulos P, Richardson D J 2010 36th European Conference and Exhibition on Optical Communication Torino, Italy, September 19−23, 2010 p1

    [12]

    Stiller B, Onishchukov G, Schmauss B, Leuchs G 2014 Opt. Express 22 1028Google Scholar

    [13]

    Alan E W, Ahmad F, Fatemeh A, Cao Y W, Amirhossein M A, Ahmed A, Liao P C, Zou K H, Ari N W, Moshe T 2019 J. Lightwave Technol. 37 21Google Scholar

    [14]

    Wen F, Geng Y, Liao M L, Wu B J, Lu L J, Zhou L J, Zhou X Y, Qiu K, Chen J P 2017 Asia Communications and Photonics Conference Guangdong, China, November 10−13, 2017 p1

    [15]

    Zhou X Y, Wu B J, Wen F, Zhang H C, Zhou H, Qiu K 2014 Opt. Express 22 22937Google Scholar

    [16]

    Ryf R, Randel S, Gnauck A H, Bolle C, Essiambre R, Winzer P J, Peckham D W, Mccurdy A, Lingle R 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers ConferenceLos Angeles, USA, March 6−10, 2011 p1

    [17]

    Wen F, Wu B J, Qiu K 2019 Opt. Express 27 19940Google Scholar

    [18]

    宋阳 2018 硕士学位论文 (成都: 电子科技大学)

    Song Y 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [19]

    Sygletos S, Weerasuriya R, Ibrahim S K, Gunning F, Phelan R, O'Gorman J, O'Carrol J, Kelly B, Bogris A, Syvridis D, Lundström C, Andrekson P, Parmigiani F, Richardson D J, Ellis A D 2010 12th International Conference on Transparent Optical Networks Munich, Germany, June 27−July 1, 2010 p1

    [20]

    Guo B, Wen F, Wu B J, Sun F, Qiu K 2019 IEEE Access 7 149666Google Scholar

    [21]

    Wen F, Tsekrekos C P, Geng Y, Zhou X Y, Wu B J, Qiu K, Turitsyn S K, Sygletos S 2018 Opt. Express 26 12698Google Scholar

    [22]

    万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆 2019 物理学报 68 20182129

    Wan F, Wu B J, Cao Y M, Wang Y H, Wen F, Qiu K 2019 Acta Phys. Sin. 68 20182129

    [23]

    Jiang X R, Wu B J, Guo B, Wen F, Qiu K 2020 Opt. Commun. 458 124840

    [24]

    Li M, Liao Y B 1999 J. Optoelectron. Laser 5 480

    [25]

    武保剑, 邱昆 2013 光纤信息处理原理及技术 (北京: 科学出版社) 第152−154页

    Wu B J, Qiu K 2013 Fiber-optical Information Processing Principles and Technology (Beijing: Science Press) pp152−154 (in Chinese)

    [26]

    曹亚敏, 武保剑, 万峰, 邱昆 2018 物理学报 6 7094208

    Cao Y M, Wu B J, Wan F, Qiu K 2018 Acta Phys. Sin. 6 7094208

  • 图 1  少模PAM再生器原理图

    Fig. 1.  Schematic diagram of a few-mode PAM regenerator.

    图 2  再生器输入输出功率转移曲线

    Fig. 2.  The regenerator’sinput and output power transfer function (PTF) curve.

    图 3  LP01, LP11, LP21三个模式的NRR再生性能随(a)归一化输入噪声功率$\sigma _{{\rm{in}}}^2$和(b)输入信噪比${\rm{SN}}{{\rm{R}}_{{\rm{in}}}}$的变化曲线

    Fig. 3.  The NRR regeneration performance of LP01, LP11, and LP21 with (a) normalized input noise power (b) input signal-to-noise ratio.

    图 4  LP01, LP11, LP21再生前后电平功率分布直方图 (a) LP01; (b) LP11; (c) LP21

    Fig. 4.  The each level power histogram before and after regeneration of LP01, LP11 and LP21: (a) LP01; (b) LP11; (c) LP21.

    表 1  高非线性硫化物光纤参数

    Table 1.  The highly nonlinear As-Se chalcogenide glass fiber’s parameters.

    模式类型模场分布有效折射率有效模场面积非线性系数
    nAeff,i/μm2γi/W–1·km–1
    LP011.4444143.4123118.72
    LP111.4425206.489482.5
    LP211.4400236.830871.8
    下载: 导出CSV

    表 2  FM-NOLM再生器设计参数

    Table 2.  The parameters ofFM-NOLM Regenerator

    模式
    类型
    多模光纤耦合器辅助光源功率少模光放大器增益
    模式耦合效率${\rho _i}$${P_{y, i}}/{\rm{dBm}}$${G_i}/{\rm{dB}}$
    LP010.8423.731.99
    LP110.5022.625.83
    LP210.1825.5010.86
    下载: 导出CSV
  • [1]

    Berdague S, Facq P 1982 Appl. Opt. 21 1950Google Scholar

    [2]

    Ryf R, Randel S, Fontaine N K, Palou X 2013 39th European Conference and Exhibition on Optical Communication London, UK, September 22–26, 2013 We2 D.1

    [3]

    Sakamoto T, Saitoh K, Saitoh S, Abe Y, Takenaga K, Urushibara A, Wada M, Matsui T, Aikawa K, Nakajima K 2018 44th European Conference and Exhibition on Optical Communication Roma, Italy, September 23–27, 2018 p1

    [4]

    Filipe M F, Costa S C, Sygletos S, Ellis A D 2019 J. Lightwave Technol. 37 989Google Scholar

    [5]

    Rademacher G, Luis R S, Puttnam B J, Maruyama R, Aikawa K, Awaji Y, Furukawa H, Petermann K, Wada N 2019 J. Lightwave Technol. 37 1273Google Scholar

    [6]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R, Winzer P J, Peckham D W, Mccurdy A H, Lingle R 2012 J. Lightwave Technol. 30 521

    [7]

    Sidelnikov G, Redyuk A, Ferreira F, Sygletos S 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics ConferenceMunich, Germany, June 25−29, 2017 p1

    [8]

    Tavares J S, Pessoa L M, Salgado H M 2017 J. Lightwave Technol. 35 4072Google Scholar

    [9]

    Ip E, Li M J, BennettK, Huang Y K, TanakaA, KorolevA, KoreshkovK, Wo od, William, MateoE, Hu J Q, YanoY 2014 J. Lightwave Technol. 32 790Google Scholar

    [10]

    Mamyshev P V 1998 24th European Conference on Optical Communication Madrid, Spain, September 20−24, 1998 p475

    [11]

    Kakande J, Bogris A, Slavik R, Parmigiani F, Syvridis D, Petropoulos P, Richardson D J 2010 36th European Conference and Exhibition on Optical Communication Torino, Italy, September 19−23, 2010 p1

    [12]

    Stiller B, Onishchukov G, Schmauss B, Leuchs G 2014 Opt. Express 22 1028Google Scholar

    [13]

    Alan E W, Ahmad F, Fatemeh A, Cao Y W, Amirhossein M A, Ahmed A, Liao P C, Zou K H, Ari N W, Moshe T 2019 J. Lightwave Technol. 37 21Google Scholar

    [14]

    Wen F, Geng Y, Liao M L, Wu B J, Lu L J, Zhou L J, Zhou X Y, Qiu K, Chen J P 2017 Asia Communications and Photonics Conference Guangdong, China, November 10−13, 2017 p1

    [15]

    Zhou X Y, Wu B J, Wen F, Zhang H C, Zhou H, Qiu K 2014 Opt. Express 22 22937Google Scholar

    [16]

    Ryf R, Randel S, Gnauck A H, Bolle C, Essiambre R, Winzer P J, Peckham D W, Mccurdy A, Lingle R 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers ConferenceLos Angeles, USA, March 6−10, 2011 p1

    [17]

    Wen F, Wu B J, Qiu K 2019 Opt. Express 27 19940Google Scholar

    [18]

    宋阳 2018 硕士学位论文 (成都: 电子科技大学)

    Song Y 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [19]

    Sygletos S, Weerasuriya R, Ibrahim S K, Gunning F, Phelan R, O'Gorman J, O'Carrol J, Kelly B, Bogris A, Syvridis D, Lundström C, Andrekson P, Parmigiani F, Richardson D J, Ellis A D 2010 12th International Conference on Transparent Optical Networks Munich, Germany, June 27−July 1, 2010 p1

    [20]

    Guo B, Wen F, Wu B J, Sun F, Qiu K 2019 IEEE Access 7 149666Google Scholar

    [21]

    Wen F, Tsekrekos C P, Geng Y, Zhou X Y, Wu B J, Qiu K, Turitsyn S K, Sygletos S 2018 Opt. Express 26 12698Google Scholar

    [22]

    万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆 2019 物理学报 68 20182129

    Wan F, Wu B J, Cao Y M, Wang Y H, Wen F, Qiu K 2019 Acta Phys. Sin. 68 20182129

    [23]

    Jiang X R, Wu B J, Guo B, Wen F, Qiu K 2020 Opt. Commun. 458 124840

    [24]

    Li M, Liao Y B 1999 J. Optoelectron. Laser 5 480

    [25]

    武保剑, 邱昆 2013 光纤信息处理原理及技术 (北京: 科学出版社) 第152−154页

    Wu B J, Qiu K 2013 Fiber-optical Information Processing Principles and Technology (Beijing: Science Press) pp152−154 (in Chinese)

    [26]

    曹亚敏, 武保剑, 万峰, 邱昆 2018 物理学报 6 7094208

    Cao Y M, Wu B J, Wan F, Qiu K 2018 Acta Phys. Sin. 6 7094208

  • [1] 惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民. 基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤. 物理学报, 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] 孙凡, 文峰, 武保剑, Tan Ming-Ming, 凌云, 邱昆. 基于双向正交泵浦半导体光放大器结构的全光相位保持幅度再生技术. 物理学报, 2022, 71(20): 204204. doi: 10.7498/aps.71.20220703
    [3] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [4] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [5] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器. 物理学报, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [6] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究. 物理学报, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [7] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [8] 陈新, 霍力, 娄采云, 王强, 余文科, 姜向宇, 赵之玺, 章恩耀. 100Gb/s归零码信号的2R再生. 物理学报, 2016, 65(5): 054208. doi: 10.7498/aps.65.054208
    [9] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究. 物理学报, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [10] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计. 物理学报, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [11] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [12] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析. 物理学报, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [13] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明. 基于少模光纤的模分复用系统多输入多输出均衡与解调. 物理学报, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [14] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽. 基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究. 物理学报, 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [15] 王菊, 于晋龙, 罗俊, 王文睿, 韩丙辰, 吴波, 郭精忠, 杨恩泽. 基于信号抽运的光纤光参量放大的全光3R再生系统. 物理学报, 2011, 60(9): 091201. doi: 10.7498/aps.60.091201
    [16] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [17] 于晋龙, 罗俊, 韩丙辰, 郭精忠, 吴波, 王菊, 张晓媛, 杨恩泽. 基于光纤光参量放大的异步双波长全光再生技术研究. 物理学报, 2010, 59(9): 6138-6144. doi: 10.7498/aps.59.6138
    [18] 张婧, 潘炜, 闫连山, 罗斌. 基于光纤自相位调制多波长全光再生的色散管理优化. 物理学报, 2010, 59(10): 7002-7007. doi: 10.7498/aps.59.7002
    [19] 刘建国, 开桂云, 薛力芳, 张春书, 刘艳格, 王 志, 郭宏雷, 李 燕, 孙婷婷, 袁树忠, 董孝义. 基于高非线性光子晶体光纤Sagnac环形镜的全光开关. 物理学报, 2007, 56(2): 941-945. doi: 10.7498/aps.56.941
    [20] 吴建伟, 夏光琼, 吴正茂. 基于半导体光放大器和非线性光纤环镜的光脉冲压缩器的设计模型和理论分析. 物理学报, 2004, 53(4): 1105-1109. doi: 10.7498/aps.53.1105
计量
  • 文章访问数:  7082
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 修回日期:  2020-02-06
  • 刊出日期:  2020-04-05

/

返回文章
返回