搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

少模光纤放大器中的准静态模式不稳定实验研究

罗雪雪 陶汝茂 刘志巍 史尘 张汉伟 王小林 周朴 许晓军

引用本文:
Citation:

少模光纤放大器中的准静态模式不稳定实验研究

罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军

Quasi-static mode instability in few-mode fiber amplifier

Luo Xue-Xue, Tao Ru-Mao, Liu Zhi-Wei, Shi Chen, Zhang Han-Wei, Wang Xiao-Lin, Zhou Pu, Xu Xiao-Jun
PDF
导出引用
  • 模式不稳定发现于2010年,是影响高功率光纤激光器功率提升的重要限制因素.当前模式不稳定主要有两类,一类是动态模式不稳定,一类是准静态模式不稳定.本文研究了纤芯/内包层直径为25 μm/400 μm掺镱双包层光纤后向抽运放大器中的模式不稳定效应.通过对功率、光束质量和时域数据的分析,发现在该放大器中出现了准静态模式不稳定的现象,随着抽运功率的增加,放大器输出光束质量逐步退化,而时域上没有发现明显的动态模式不稳定特性.实验上对不同种子功率下放大器的输出特性进行研究,结果表明,通过提高种子激光功率可以较为有效地提高模式不稳定阈值,在种子功率为528 W时,当输出功率大于3000 W,输出激光效率没有明显下降.
    One of the most outstanding limitations in the evolution of the power scaling of fiber laser with near diffraction limited beam quality has been the mode instability since it was found in 2010. For a long time, researchers have focused on the dynamic mode instability (DMI) theoretically and experimentally, and it was not until 2016 that a new analytical model called quasi-static mode instability (QSMI) was proposed. Unlike DMI, because of the one-way energy transfer characteristic on a specific time scale, QSMI will show no apparent fluctuations with respect to the time domain traces. In this paper, based on a counter-pump few-mode fiber amplifier schematic system, the output power, beam quality and time traces of the amplifier under changing seed laser power are measured to investigate its mode instability effect. The ytterbium-doped fiber of the amplifier has a core diameter of 25 μm and inner cladding diameter of 400 μm, which can support 4-5 modes to be transmitted in the amplifier. The experimental results reveal that QSMI happens in the few-mode fiber amplifier. Taking 234 W seed power for example, it is found that when the output power reaches 2030 W, the optical-to-optical efficiency begins to fell from 86% to 32%, and at the same time the M2 value has an abrupt degradation from 2.2 to 2.8, which indicates that MI happens. On the other hand, it can be seen from the time traces of the output laser that there exist no rapid fluctuations, and the Fourier analysis shows no sign of DMI characteristic frequency components either. Quoting the definition of drifting ratio σ, when the output power is 2030 W under 234 W seed power, it is only 4%, and thus verifying that it is QSMI instead of DMI. The experiment also indicates that increasing the seed power has an effective influence on enhancing the mode instability power. When the seed power is raised from 86 W to 528 W, the corresponding threshold power is increased from 1560 W to 3090 W. And for 528 W seed power, when the output laser surpasses 3000 W, the optical-to-optical efficiency does not decline as fast as other relatively low seed power. To sum up, the mode instability effect represents a kind of quasi-static property in these large core diameter few-mode fiber amplifiers, which needs further studying.
      通信作者: 刘志巍, lzw1033@163.com;chinawxllin@163.com ; 王小林, lzw1033@163.com;chinawxllin@163.com
    • 基金项目: 国家自然科学基金(批准号:61735007,61505260)资助的课题.
      Corresponding author: Liu Zhi-Wei, lzw1033@163.com;chinawxllin@163.com ; Wang Xiao-Lin, lzw1033@163.com;chinawxllin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61735007, 61505260).
    [1]

    Limpert J 2017 Optical Fiber Communications Conference and Exhibition Los Angeles, March 13-19, 2017 p1

    [2]

    Zervas M N 2017 European Conference on Lasers and Electro-Optics European Quantum Electronics Conference Munich, June 25-29, 2017 p1

    [3]

    Otto H, Jauregui C, Limpert J, Tnnermann A 2015 SPIE 9728 1

    [4]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tnnermann A 2010 Opt. Lett. 35 94

    [5]

    Khitrov V, Farley K, Majid I, Christensen S, Samson B 2010 SPIE 7686 78

    [6]

    Ward B G 2015 Opt. Lett. 40 542

    [7]

    Yu C X, Shatrovoy O, Fan T Y, Taunay T F 2016 Opt. Lett. 41 5202

    [8]

    Otto H, Modsching N, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Express 23 15265

    [9]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H, Schmidt O, Schreiber T, Limpert J, Tnnermann A 2011 Opt. Express 19 13218

    [10]

    Otto H, Stutzki F, Modsching N, Jauregui C, Limpert J, Tnnermann A 2014 Opt. Lett. 39 6446

    [11]

    Brar K, Savage-Leuchs M, Henrie J, Courtney S, Dilley C, Afzal R, Honea E 2014 SPIE 896 1

    [12]

    Yang B L, Zhang H W, Shi C, Wang X L, Zhou P, Xu X J, Chen J B, Liu Z J, Lu Q S 2016 Opt. Express 24 27828

    [13]

    Laurila M, Jorgensen M M, L gsgaard J, Alkeskjold T T 2013 Conference on Lasers and Electro-Optics International Quantum Electronics Conference Munich, May 12-16, 2013 CJ_3_5

    [14]

    Puju P V, Zelenova M Z, Tyrtyshnyy V A 2016 International Conference Laser Optics, St. Petersburg June 27-July 1, 2016 p1

    [15]

    Wang X L, Tao R M, Xiao H, Zhou P, Zhang C D, Xu X J 2013 Advance Solid-State Laser Paris, October 27-November 1, 2013 JTh2A. 44

    [16]

    Jauregui C, Eidam T, Otto H, Stutzki F, Jansen F, Limpert J, Tnnermann A 2012 Opt. Express 20 12912

    [17]

    Jauregui C, Eidam T, Otto H, Stutzki F, Jansen F, Limpert J, Tnermann A 2012 Opt. Express 20 440

    [18]

    Smith A V, Smith J J 2011 Opt. Express 19 10180

    [19]

    Smith A V, Smith J J 2013 IEEE Photon. J. 5 7100807

    [20]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407

    [21]

    Dong L 2013 Opt. Express 21 2642

    [22]

    Ward B 2016 Opt. Express 24 3488

    [23]

    Lægsgaard J 2016 Opt. Express 24 13429

    [24]

    Gebavi H, Taccheo S, Lablonde L, Cadier B, Robin T, Mechin D, Tregoat D 2013 Opt. Lett. 38 196

    [25]

    Wang X L, Zhang H W, Tao R M, Su R T, Ma P F, Zhou P, Xu X J 2017 European Conference on Lasers and Electro-Optics European Quantum Electronics Conference Munich, June 25-29, 2017 CJ_6_3

    [26]

    Otto H, Jauregui C, Stutzki F, Jansen F, Limpert J, Tnnermann A 2013 Advanced Solid-State Lasers Congress Paris, October 27-November 1, 2013 ATu3A.02

    [27]

    Tao R M, Wang X L, Zhou P, Liu Z 2017 J. Opt. 19 065202

    [28]

    Tao R M, Zhou P, Wang X L, Si L, Liu Z J 2014 Acta Phys. Sin. 63 085202 (in Chinese) [陶汝茂, 周朴, 王小林, 司磊, 刘泽金 2014 物理学报 63 085202]

    [29]

    Tao R M, Ma P F, Wang X L, Zhou P, Liu Z J 2016 J. Opt. 18 65501

  • [1]

    Limpert J 2017 Optical Fiber Communications Conference and Exhibition Los Angeles, March 13-19, 2017 p1

    [2]

    Zervas M N 2017 European Conference on Lasers and Electro-Optics European Quantum Electronics Conference Munich, June 25-29, 2017 p1

    [3]

    Otto H, Jauregui C, Limpert J, Tnnermann A 2015 SPIE 9728 1

    [4]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tnnermann A 2010 Opt. Lett. 35 94

    [5]

    Khitrov V, Farley K, Majid I, Christensen S, Samson B 2010 SPIE 7686 78

    [6]

    Ward B G 2015 Opt. Lett. 40 542

    [7]

    Yu C X, Shatrovoy O, Fan T Y, Taunay T F 2016 Opt. Lett. 41 5202

    [8]

    Otto H, Modsching N, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Express 23 15265

    [9]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H, Schmidt O, Schreiber T, Limpert J, Tnnermann A 2011 Opt. Express 19 13218

    [10]

    Otto H, Stutzki F, Modsching N, Jauregui C, Limpert J, Tnnermann A 2014 Opt. Lett. 39 6446

    [11]

    Brar K, Savage-Leuchs M, Henrie J, Courtney S, Dilley C, Afzal R, Honea E 2014 SPIE 896 1

    [12]

    Yang B L, Zhang H W, Shi C, Wang X L, Zhou P, Xu X J, Chen J B, Liu Z J, Lu Q S 2016 Opt. Express 24 27828

    [13]

    Laurila M, Jorgensen M M, L gsgaard J, Alkeskjold T T 2013 Conference on Lasers and Electro-Optics International Quantum Electronics Conference Munich, May 12-16, 2013 CJ_3_5

    [14]

    Puju P V, Zelenova M Z, Tyrtyshnyy V A 2016 International Conference Laser Optics, St. Petersburg June 27-July 1, 2016 p1

    [15]

    Wang X L, Tao R M, Xiao H, Zhou P, Zhang C D, Xu X J 2013 Advance Solid-State Laser Paris, October 27-November 1, 2013 JTh2A. 44

    [16]

    Jauregui C, Eidam T, Otto H, Stutzki F, Jansen F, Limpert J, Tnnermann A 2012 Opt. Express 20 12912

    [17]

    Jauregui C, Eidam T, Otto H, Stutzki F, Jansen F, Limpert J, Tnermann A 2012 Opt. Express 20 440

    [18]

    Smith A V, Smith J J 2011 Opt. Express 19 10180

    [19]

    Smith A V, Smith J J 2013 IEEE Photon. J. 5 7100807

    [20]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407

    [21]

    Dong L 2013 Opt. Express 21 2642

    [22]

    Ward B 2016 Opt. Express 24 3488

    [23]

    Lægsgaard J 2016 Opt. Express 24 13429

    [24]

    Gebavi H, Taccheo S, Lablonde L, Cadier B, Robin T, Mechin D, Tregoat D 2013 Opt. Lett. 38 196

    [25]

    Wang X L, Zhang H W, Tao R M, Su R T, Ma P F, Zhou P, Xu X J 2017 European Conference on Lasers and Electro-Optics European Quantum Electronics Conference Munich, June 25-29, 2017 CJ_6_3

    [26]

    Otto H, Jauregui C, Stutzki F, Jansen F, Limpert J, Tnnermann A 2013 Advanced Solid-State Lasers Congress Paris, October 27-November 1, 2013 ATu3A.02

    [27]

    Tao R M, Wang X L, Zhou P, Liu Z 2017 J. Opt. 19 065202

    [28]

    Tao R M, Zhou P, Wang X L, Si L, Liu Z J 2014 Acta Phys. Sin. 63 085202 (in Chinese) [陶汝茂, 周朴, 王小林, 司磊, 刘泽金 2014 物理学报 63 085202]

    [29]

    Tao R M, Ma P F, Wang X L, Zhou P, Liu Z J 2016 J. Opt. 18 65501

  • [1] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2022, 71(3): 034205. doi: 10.7498/aps.71.20211751
    [2] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [3] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211751
    [4] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器. 物理学报, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [5] 张志伦, 张芳芳, 林贤峰, 王世杰, 曹驰, 邢颍滨, 廖雷, 李进延. 国产部分掺杂光纤实现3 kW全光纤激光振荡输出. 物理学报, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [6] 陈益沙, 廖雷, 李进延. 数值孔径对掺镱光纤振荡器模式不稳定阈值影响的实验研究. 物理学报, 2019, 68(11): 114206. doi: 10.7498/aps.68.20182257
    [7] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器. 物理学报, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [8] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [9] 姜曼, 马鹏飞, 周朴, 王小林. 基于多层电介质光栅光谱合成的光束质量. 物理学报, 2016, 65(10): 104203. doi: 10.7498/aps.65.104203
    [10] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究. 物理学报, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [11] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计. 物理学报, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [12] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [13] 潘北诚, 史庆藩, 孙刚. 颗粒堆准静态崩塌及慢速流动过程中的堆结构研究. 物理学报, 2014, 63(1): 014703. doi: 10.7498/aps.63.014703
    [14] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究. 物理学报, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [15] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析. 物理学报, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [16] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明. 基于少模光纤的模分复用系统多输入多输出均衡与解调. 物理学报, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [17] 陶汝茂, 司磊, 马阎星, 邹永超, 周朴. 高能光纤激光经准直系统后的光束质量研究. 物理学报, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [18] 潘雷雷, 张彬, 阴素芹, 张艳. 掺Yb光纤激光器阵列谱合成系统的光束传输模型及光束特性分析. 物理学报, 2009, 58(12): 8289-8296. doi: 10.7498/aps.58.8289
    [19] 王 宁, 陆雨田, 李晓莉, 焦志勇. InnoSlab混合腔输出光束质量的理论研究. 物理学报, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [20] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究. 物理学报, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
计量
  • 文章访问数:  5107
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-19
  • 修回日期:  2018-03-14
  • 刊出日期:  2019-07-20

/

返回文章
返回