搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多层电介质光栅光谱合成的光束质量

姜曼 马鹏飞 周朴 王小林

引用本文:
Citation:

基于多层电介质光栅光谱合成的光束质量

姜曼, 马鹏飞, 周朴, 王小林

Beam quality in spectral beam combination based on multi-layer dielectric grating

Jiang Man, Ma Peng-Fei, Zhou Pu, Wang Xiao-Lin
PDF
导出引用
  • 基于电介质光栅的光谱合成是实现高功率高光束质量激光的重要途径. 在电介质光栅的光谱合成系统中, 光栅色散效应是影响合成激光光束质量的重要因素. 本文推导了单光栅和双光栅光谱合成系统中由于光栅色散引起M2因子的变化公式; 详细讨论了这两种合成系统中单路激光线宽、单路激光光斑半径、相邻两路激光波长差、相邻两路激光间距以及光栅周期对光束质量的影响. 研究表明对于单光栅合成系统, 在合成过程中若保持光束质量M2因子的大小不变, 则单路激光带宽随光斑半径的增加而减小; 在双光栅光谱合成系统中, 在保持光束质量的前提下, 单路激光带宽可随光斑半径的增大而相应增加. 数值计算表明, 若要满足合成光束的光束质量M2 1.2的要求, 在单光栅系统中激光线宽需窄于亚纳米量级, 在双光栅系统中激光带宽可为亚纳米. 本文为高功率、高光束质量的光纤激光光谱合成系统的搭建提供了理论指导.
    Owing to damage, thermal issues, and nonlinear optical effects, the output power of fiber laser has been proven to be limited. Beam combining techniques are the attractive solutions in order to achieve high-power high-brightness fiber laser output. Designing such a high-power laser system relies on coherent and incoherent combination of radiation from multiple laser channels into a single beam with enhanced brightness. Spectral beam combination is a promising alternative way that allows each array to be overlapped in near-and far-field without spatial interference, thus relaxing the requirements for linewidth controlling and phase locking of individual array and practically allowing power and brightness to be scaled with the potential to combine a large number of channels. Spectral beam combination implementations can be divided into two subsets: serial and parallel, based on the combining elements. For scaling high power, we pursue spectral beam combining with parallel subsets as an alternative to other beam combination implementation. In the spectral beam combining system based on multi-layer dielectric grating, the combined beam suffers the degradation in beam quality, which is caused by the optical dispersion, and also by the random error due to the misalignment of arrays or the thermal-optic effect of grating in the experimental system. In this paper, we strictly derive the equation of M2 variation caused by the optical dispersion in both single-grating structure and dual-grating structure. And also, we discuss how the laser linewidth, beam size, spectral separation of two adjacent channels, distance between two adjacent channels and the period of grating influence the desired beam quality in detail, separately, in the single-grating structure and the dual-grating structure. The results show that with the value of M2 fixed, the finite beam size gives rise to a laser bandwidth decreasing in single-grating structure combination, whereas the beam size induces a laser bandwidth to increase in dual-grating structure combination. If M2 1.2, the laser bandwidth of dual-grating system can be over several sub-nanometers, rather than several tens of pm as in the single grating design.
      通信作者: 周朴, zhoupu203@163.com
      Corresponding author: Zhou Pu, zhoupu203@163.com
    [1]

    Injeyan H, Goodno G D 2013 High-Power Laser Handbook (New York: McGraw-Hill Professional) p13

    [2]

    Stiles E 2009 5^ International Workshop on Fiber Lasers, Dresden, Germany, September 30-October 1, pp4-6

    [3]

    Shiner B 2013 CLEO: Applications and Technology San Jose, California United States, June 9-14, pAF2J.1

    [4]

    Mo S, Xu S, Huang X, Zhang W, Feng Z, Chen D, Yang T, Yang Z 2013 Opt. Express 21 12419

    [5]

    Wang J, Hu J, Zhang S, Chen L, Fang Y, Feng Y, Li Z 2015 Chin. Phys. B 24 024214

    [6]

    Dai S J, He B, Zhou J, Zhao C, Chen X L, Liu C 2013 Chinese J. Lasers 40 702001 (in Chinese) [代守军, 何兵, 周军, 赵纯, 陈晓龙, 刘驰 2013 中国激光 40 702001]

    [7]

    Hu Z, Yan P, Xiao Q, Liu Q, Gong M 2014 Chin. Phys. B 23 0104206

    [8]

    Jauregui C, Limpert J, Tnnermann A 2013 Nature Photonics 7 861

    [9]

    Augst S J, Ranka J K, Fan T Y, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707

    [10]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Peschel T, Brckner F, Clausnitzer T, Limpert J, Eberhardt R, Tnnermann A, Gowin M, Have E, Ludewigt K, Jung M 2009 Opt. Express 17 1178

    [11]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tnnermann A, Ludewigt K, Gowin M, Have E, Jung M 2011 Opt. Lett. 36 3118

    [12]

    Loftus T H, Thomas A M, Hoffman P R, Norsen M, Royse R, Liu A, Honea E C 2007 IEEE J. Sel. Top. Quantum Electron. 13 487

    [13]

    Loftus T H, Liu A, Hoffman P R, Thomas A M, Norsen M, Royse R, Honea E 2007 Opt. Lett. 32 349

    [14]

    Afzal R S, Honea E, Leuchs M S, Gitkind N, Humphreys R, Henrie J, Brar K, Jander D 2012 SPIE 8547 High-Power Lasers: Technology and Systems Edinburgh, United Kingdom, November 8, 2012 doi:10.1117/12.982047

    [15]

    Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384

    [16]

    Andrusyak O, Smirnov V, Venus G, Vorobiev N, Glebov L 2009 SPIE 7195 Fiber Lasers VI: Technology, Systems, and Applications, San Jose, CA, February 19, 2009 doi:10.1117/12.813402

    [17]

    Drachenberg D R, Andrusyak O, Cohanoschi I, Divliansky I, Mokhun O, Podvyaznyy A, Smirnov V, Venus G B, Glebov L B 2010 SPIE 7580 Fiber Lasers VII: Technology, Systems, and Applications San Francisco, California, USAFebruary 17,2010 doi:10.1117/12.845951

    [18]

    Drachenberg D, Divliansky I, Smirnov V, Venus G, Glebov L 2011 SPIE 7914 Fiber Lasers VIII: Technology, Systems, and Applications San Francisco, California, USA, February 10, 2011 doi:10.1117/12.877172

    [19]

    Ott D, Divliansky I, Anderson B, Venus G, Glebov L 2013 Opt. Express 21 29620

    [20]

    Limpert J, Rser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tnnermann A 2007 IEEE J. Sel. Top. Quantum Electron. 13 537

    [21]

    Perry M D, Boyd R D, Britten J A, Decker D, Shore B W 1995 Opt. Lett. 20 940

    [22]

    Hehl K, Bischoff J, Mohaupt U, Palme M, Schnabel B, Wenke L, Bdefeld R, Theobald W, Welsch E, Sauerbrey R, Heyer H 1999 Appl. Opt. 38 6257

    [23]

    Veldkamp W B, Leger J R, Swanson G J 1986 Opt. Lett. 11 303

    [24]

    Leger J R, Hotz M, Swanson G J 1988 The Lincoln Labs Journal 1 225

    [25]

    Leger J R, Goltsos W C 1992 IEEE J. Quantum Elect. 28 1088

    [26]

    Ma Y, Yan H, Tian F, Sun Y, Zhao L, Wang S, Xie G, Li T, Wang X, Liang X, Wang Y, Ran H, Peng W, Ke W, Feng Y, Tang C, Zhang K, Gao Q 2015 High Power Laser and Particle Beams 27 040101

    [27]

    Schreiber T, Wirth C, Schmidt O, Andersen T. V, Tsybin I, Bhme S, Peschel T, Brckner F, Clausnitzer T, Rser F, Eberhardt R, Limpert J, Tnnermann A 2009 IEEE J. Sel. Top. Quantum Elect. 15 354

    [28]

    Liu A, Mead R, Vatter T, Henderson A, Stafford R 2004 SPIE 5335 Fiber Lasers: Technology, Systems, and Applications San Jose, CA, June 7, 2004 doi:10.1117/12.529598

    [29]

    Madasamy P, Jander D R, Brooks C D, Loftus T H, Thomas A M, Jones P, Honea E C 2009 IEEE J. Sel. Top. Quantum Elect. 15 337

  • [1]

    Injeyan H, Goodno G D 2013 High-Power Laser Handbook (New York: McGraw-Hill Professional) p13

    [2]

    Stiles E 2009 5^ International Workshop on Fiber Lasers, Dresden, Germany, September 30-October 1, pp4-6

    [3]

    Shiner B 2013 CLEO: Applications and Technology San Jose, California United States, June 9-14, pAF2J.1

    [4]

    Mo S, Xu S, Huang X, Zhang W, Feng Z, Chen D, Yang T, Yang Z 2013 Opt. Express 21 12419

    [5]

    Wang J, Hu J, Zhang S, Chen L, Fang Y, Feng Y, Li Z 2015 Chin. Phys. B 24 024214

    [6]

    Dai S J, He B, Zhou J, Zhao C, Chen X L, Liu C 2013 Chinese J. Lasers 40 702001 (in Chinese) [代守军, 何兵, 周军, 赵纯, 陈晓龙, 刘驰 2013 中国激光 40 702001]

    [7]

    Hu Z, Yan P, Xiao Q, Liu Q, Gong M 2014 Chin. Phys. B 23 0104206

    [8]

    Jauregui C, Limpert J, Tnnermann A 2013 Nature Photonics 7 861

    [9]

    Augst S J, Ranka J K, Fan T Y, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707

    [10]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Peschel T, Brckner F, Clausnitzer T, Limpert J, Eberhardt R, Tnnermann A, Gowin M, Have E, Ludewigt K, Jung M 2009 Opt. Express 17 1178

    [11]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tnnermann A, Ludewigt K, Gowin M, Have E, Jung M 2011 Opt. Lett. 36 3118

    [12]

    Loftus T H, Thomas A M, Hoffman P R, Norsen M, Royse R, Liu A, Honea E C 2007 IEEE J. Sel. Top. Quantum Electron. 13 487

    [13]

    Loftus T H, Liu A, Hoffman P R, Thomas A M, Norsen M, Royse R, Honea E 2007 Opt. Lett. 32 349

    [14]

    Afzal R S, Honea E, Leuchs M S, Gitkind N, Humphreys R, Henrie J, Brar K, Jander D 2012 SPIE 8547 High-Power Lasers: Technology and Systems Edinburgh, United Kingdom, November 8, 2012 doi:10.1117/12.982047

    [15]

    Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384

    [16]

    Andrusyak O, Smirnov V, Venus G, Vorobiev N, Glebov L 2009 SPIE 7195 Fiber Lasers VI: Technology, Systems, and Applications, San Jose, CA, February 19, 2009 doi:10.1117/12.813402

    [17]

    Drachenberg D R, Andrusyak O, Cohanoschi I, Divliansky I, Mokhun O, Podvyaznyy A, Smirnov V, Venus G B, Glebov L B 2010 SPIE 7580 Fiber Lasers VII: Technology, Systems, and Applications San Francisco, California, USAFebruary 17,2010 doi:10.1117/12.845951

    [18]

    Drachenberg D, Divliansky I, Smirnov V, Venus G, Glebov L 2011 SPIE 7914 Fiber Lasers VIII: Technology, Systems, and Applications San Francisco, California, USA, February 10, 2011 doi:10.1117/12.877172

    [19]

    Ott D, Divliansky I, Anderson B, Venus G, Glebov L 2013 Opt. Express 21 29620

    [20]

    Limpert J, Rser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tnnermann A 2007 IEEE J. Sel. Top. Quantum Electron. 13 537

    [21]

    Perry M D, Boyd R D, Britten J A, Decker D, Shore B W 1995 Opt. Lett. 20 940

    [22]

    Hehl K, Bischoff J, Mohaupt U, Palme M, Schnabel B, Wenke L, Bdefeld R, Theobald W, Welsch E, Sauerbrey R, Heyer H 1999 Appl. Opt. 38 6257

    [23]

    Veldkamp W B, Leger J R, Swanson G J 1986 Opt. Lett. 11 303

    [24]

    Leger J R, Hotz M, Swanson G J 1988 The Lincoln Labs Journal 1 225

    [25]

    Leger J R, Goltsos W C 1992 IEEE J. Quantum Elect. 28 1088

    [26]

    Ma Y, Yan H, Tian F, Sun Y, Zhao L, Wang S, Xie G, Li T, Wang X, Liang X, Wang Y, Ran H, Peng W, Ke W, Feng Y, Tang C, Zhang K, Gao Q 2015 High Power Laser and Particle Beams 27 040101

    [27]

    Schreiber T, Wirth C, Schmidt O, Andersen T. V, Tsybin I, Bhme S, Peschel T, Brckner F, Clausnitzer T, Rser F, Eberhardt R, Limpert J, Tnnermann A 2009 IEEE J. Sel. Top. Quantum Elect. 15 354

    [28]

    Liu A, Mead R, Vatter T, Henderson A, Stafford R 2004 SPIE 5335 Fiber Lasers: Technology, Systems, and Applications San Jose, CA, June 7, 2004 doi:10.1117/12.529598

    [29]

    Madasamy P, Jander D R, Brooks C D, Loftus T H, Thomas A M, Jones P, Honea E C 2009 IEEE J. Sel. Top. Quantum Elect. 15 337

  • [1] 张雨秋, 黄良金, 常琦, 安毅, 马鹏飞, 冷进勇, 周朴. 光纤激光基模光束的${\boldsymbol{\beta}}$因子. 物理学报, 2021, 70(20): 204203. doi: 10.7498/aps.70.20210281
    [2] 王井上, 张瑶, 王军利, 魏志义, 常国庆. 飞秒光纤激光相干合成技术最新进展. 物理学报, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
    [3] 何婷, 田博宇, 邱蝶, 张彬. 基于直角锥面变形镜的薄管激光光束质量提升新方法. 物理学报, 2021, 70(17): 179501. doi: 10.7498/aps.70.20210603
    [4] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响. 物理学报, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [5] 张志伦, 张芳芳, 林贤峰, 王世杰, 曹驰, 邢颍滨, 廖雷, 李进延. 国产部分掺杂光纤实现3 kW全光纤激光振荡输出. 物理学报, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [6] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究. 物理学报, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [7] 周泰斗, 梁小宝, 李超, 黄志华, 封建胜, 赵磊, 王建军, 景峰. 基于透射型体布拉格光栅的两通道2.5 kW光谱组束输出. 物理学报, 2017, 66(8): 084204. doi: 10.7498/aps.66.084204
    [8] 吴真, 钟哲强, 杨磊, 张彬. 基于多层介质膜光栅的谱合成系统光束特性分析. 物理学报, 2016, 65(5): 054205. doi: 10.7498/aps.65.054205
    [9] 郭建增, 刘铁根, 牛志峰, 任晓明. 不同振荡放大比MOPA型化学激光器的数值模拟. 物理学报, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [10] 韩凯, 许晓军, 周朴, 马阎星, 王小林, 刘泽金. 多波长激光主动式相干合成理论初探. 物理学报, 2011, 60(7): 074206. doi: 10.7498/aps.60.074206
    [11] 耿超, 李新阳, 张小军, 饶长辉. 倾斜相差对光纤激光相干合成的影响与模拟校正. 物理学报, 2011, 60(11): 114202. doi: 10.7498/aps.60.114202
    [12] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [13] 陶汝茂, 司磊, 马阎星, 邹永超, 周朴. 高能光纤激光经准直系统后的光束质量研究. 物理学报, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [14] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [15] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统. 物理学报, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [16] 王文鹏, 许周速, 徐军, 陈钢. 封离式He-N2-CO2激光器横模特性的测量与分析. 物理学报, 2009, 58(8): 5423-5428. doi: 10.7498/aps.58.5423
    [17] 潘雷雷, 张彬, 阴素芹, 张艳. 掺Yb光纤激光器阵列谱合成系统的光束传输模型及光束特性分析. 物理学报, 2009, 58(12): 8289-8296. doi: 10.7498/aps.58.8289
    [18] 王 宁, 陆雨田, 李晓莉, 焦志勇. InnoSlab混合腔输出光束质量的理论研究. 物理学报, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [19] 张 艳, 张 彬, 祝颂军. 谱合成光束特性的模拟分析. 物理学报, 2007, 56(8): 4590-4595. doi: 10.7498/aps.56.4590
    [20] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 唐映德. 抽运光分布对二极管抽运激光器振荡光光束质量的影响. 物理学报, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
计量
  • 文章访问数:  5683
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-29
  • 修回日期:  2016-02-03
  • 刊出日期:  2016-05-05

/

返回文章
返回