-
体光栅光谱组束是获得高功率激光输出的一种有效途径. 在有限的可用带宽内,光谱通道间隔影响着组束光束数目以及最终的高功率组束输出. 采用耦合波理论,建立了一个两通道高功率光谱组束模型. 通过优化体光栅光谱通道间隔,可放宽对组束子束线宽和功率的限制,组束功率可大幅提升而光谱密度并无显著下降. 基于此,实验上获得了2.5 kW组束输出,绝对效率超过85%,通道间隔5 nm,光谱密度为0.51 kW/nm. 组束功率1 kW时,组束输出能保持好的光束质量;组束功率1.5 kW时光束质量恶化较明显,通过分析发现,组束光束质量的恶化主要受限于体光栅的色散及高功率下体光栅复杂的热畸变.Spectral beam combination based on volume Bragg gratings is an effective approach to obtaining high power laser output. In spectral beam combining system, spectral channel spacing will affect the number of non-combined sub-beams and the overall combined output power due to the finite available gain bandwidth. Based on coupled wave theory, a two-channel high power spectral beam combining model is proposed. By appropriately relaxing the requirements for the spectral channel spacing and line-width of sub-beams, the higher combined output power can be obtained but the spectral density does not significantly decrease. In this work, a 2-channel spectral beam combining system is demonstrated to present a 2.5 kW combined power with combining efficiency 85% by employing a transmitting volume Bragg grating. The combining system has a high spectral density of 0.51 kW/nm with 5 nm spectral spacing between channels. The output can keep a good beam quality when the combined power is less than 1 kW, while the significant degradation of combined beam quality occurs when output power is 1.5 kW and is restricted mainly by the dispersion properties and thermal effects of volume Bragg gratings. During this 2-channel beam combining process, no special active cooling measure is used. Interactions between laser radiation and the grating are verified. Thermal absorption of high power laser radiation in the grating will cause the temperature to remarkably increase, resulting in the thermal expansion of the grating period, which leads to the degradations of diffraction efficiency and the spectral selectivity. Research is also focused on the surface distortion, and the results indicate that the thermal-induced wave-front aberrations of the non-combined sub-beams lead to the deterioration of beam quality. Transmitted and diffracted beams experience wave-front aberrations to different degrees, leading to distinct beam deterioration.
-
Keywords:
- spectral beam combining /
- volume Bragg gratings /
- fiber lasers /
- beam quality
[1] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[2] Ke W W, Wang X J, Bao X F, Shu X J 2013 Opt. Express 21 14272
[3] Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162
[4] Yi T, Zhang J S, Zhu Y C, Gong H 2008 Chin. Phys. Lett. 25 2866
[5] Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2008 Opt. Express 16 13240
[6] Bochove E J 2002 IEEE J. Quantum Electron. 38 432
[7] Zhao L, Han J H, Li R P, Wang L G, Huang M J 2013 Chin. Phys. B 22 124207
[8] Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567
[9] Augst S J, Ranka J K, Fan T Y, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707
[10] Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384
[11] Jun W A 2006 Chin. Phys. Lett. 23 1459
[12] Wang B, Mies E, Minden M, Sanchez A 2009 Opt. Lett. 34 863
[13] Wang C H, Liu L R, Yan A M, Zhou Y, Liu D A, Hu Z J 2007 Chin. Phys. B 16 100
[14] Andrusyak O, Smirnov V, Venus G, Vorobiev N, Glebov L 2009 Proc. SPIE 7195 71951Q
[15] Wang L, Yan F P, Li Y F, Gong T R, Jian S S 2007 Acta Opt. Sin. 27 587 (in Chinese) [王琳, 延凤平, 李一凡, 龚桃荣, 简水生 2007 光学学报 27 587]
[16] Andrusyak O, Smirnov V, Venus G, Glebov L 2009 Opt. Commun. 282 2560
[17] Drachenberg D R, Andrusyak O, Cohanoschi I, Divliansky I, Mokhun O, Podvyaznyy A, Smirnov V, Venus G B, Glebov L B 2010 Proc. SPIE 7580 75801U
[18] Drachenberg D, Divliansky I, Smirnov V, Venus G, Glebov L 2011 Proc. SPIE 7914 79141F
[19] Ott D, Divliansky I, Anderson B, Venus G, Glebov L 2013 Opt. Express 21 29620
[20] Bai H J, Wang Y F, Wang J Z, Yin Z Y, Lei C Q 2013 J. Appl. Opt. 34 279 (in Chinese) [白慧君, 汪岳峰, 王军阵, 殷智勇, 雷呈强 2013 应用光学 34 279]
[21] Liu B, Li J 2013 Laser Tech. 37 656 (in Chinese) [刘兵, 李坚 2013 激光技术 37 656]
[22] Andrusyak O, Ciapurin I, Smirnov V, Venus G, Vorobiev N, Glebov L 2008 Proc. SPIE 6873 687314
[23] Ciapurin I V, Glebov L B, Smirnov V I 2006 Opt. Eng. 45 015802
[24] Liang X B, Chen L M, Zhou T D, Li C, Huang Z H, Zhao L, Wang J J, Jing F 2015 High Power Laser and Particle Beams 27 071012 (in Chinese) [梁小宝, 陈良民, 周泰斗, 李超, 黄志华, 赵磊, 王建军, 景峰 2015 强激光与粒子束 27 071012]
-
[1] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[2] Ke W W, Wang X J, Bao X F, Shu X J 2013 Opt. Express 21 14272
[3] Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162
[4] Yi T, Zhang J S, Zhu Y C, Gong H 2008 Chin. Phys. Lett. 25 2866
[5] Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2008 Opt. Express 16 13240
[6] Bochove E J 2002 IEEE J. Quantum Electron. 38 432
[7] Zhao L, Han J H, Li R P, Wang L G, Huang M J 2013 Chin. Phys. B 22 124207
[8] Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567
[9] Augst S J, Ranka J K, Fan T Y, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707
[10] Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384
[11] Jun W A 2006 Chin. Phys. Lett. 23 1459
[12] Wang B, Mies E, Minden M, Sanchez A 2009 Opt. Lett. 34 863
[13] Wang C H, Liu L R, Yan A M, Zhou Y, Liu D A, Hu Z J 2007 Chin. Phys. B 16 100
[14] Andrusyak O, Smirnov V, Venus G, Vorobiev N, Glebov L 2009 Proc. SPIE 7195 71951Q
[15] Wang L, Yan F P, Li Y F, Gong T R, Jian S S 2007 Acta Opt. Sin. 27 587 (in Chinese) [王琳, 延凤平, 李一凡, 龚桃荣, 简水生 2007 光学学报 27 587]
[16] Andrusyak O, Smirnov V, Venus G, Glebov L 2009 Opt. Commun. 282 2560
[17] Drachenberg D R, Andrusyak O, Cohanoschi I, Divliansky I, Mokhun O, Podvyaznyy A, Smirnov V, Venus G B, Glebov L B 2010 Proc. SPIE 7580 75801U
[18] Drachenberg D, Divliansky I, Smirnov V, Venus G, Glebov L 2011 Proc. SPIE 7914 79141F
[19] Ott D, Divliansky I, Anderson B, Venus G, Glebov L 2013 Opt. Express 21 29620
[20] Bai H J, Wang Y F, Wang J Z, Yin Z Y, Lei C Q 2013 J. Appl. Opt. 34 279 (in Chinese) [白慧君, 汪岳峰, 王军阵, 殷智勇, 雷呈强 2013 应用光学 34 279]
[21] Liu B, Li J 2013 Laser Tech. 37 656 (in Chinese) [刘兵, 李坚 2013 激光技术 37 656]
[22] Andrusyak O, Ciapurin I, Smirnov V, Venus G, Vorobiev N, Glebov L 2008 Proc. SPIE 6873 687314
[23] Ciapurin I V, Glebov L B, Smirnov V I 2006 Opt. Eng. 45 015802
[24] Liang X B, Chen L M, Zhou T D, Li C, Huang Z H, Zhao L, Wang J J, Jing F 2015 High Power Laser and Particle Beams 27 071012 (in Chinese) [梁小宝, 陈良民, 周泰斗, 李超, 黄志华, 赵磊, 王建军, 景峰 2015 强激光与粒子束 27 071012]
计量
- 文章访问数: 6139
- PDF下载量: 308
- 被引次数: 0