搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于透射型体布拉格光栅的两通道2.5 kW光谱组束输出

周泰斗 梁小宝 李超 黄志华 封建胜 赵磊 王建军 景峰

引用本文:
Citation:

基于透射型体布拉格光栅的两通道2.5 kW光谱组束输出

周泰斗, 梁小宝, 李超, 黄志华, 封建胜, 赵磊, 王建军, 景峰

2.5 kW average power, two-channel spectral-beam-combined output based on transmitting volume Bragg grating

Zhou Tai-Dou, Liang Xiao-Bao, Li Chao, Huang Zhi-Hua, Feng Jian-Sheng, Zhao Lei, Wang Jian-Jun, Jing Feng
PDF
导出引用
  • 体光栅光谱组束是获得高功率激光输出的一种有效途径. 在有限的可用带宽内,光谱通道间隔影响着组束光束数目以及最终的高功率组束输出. 采用耦合波理论,建立了一个两通道高功率光谱组束模型. 通过优化体光栅光谱通道间隔,可放宽对组束子束线宽和功率的限制,组束功率可大幅提升而光谱密度并无显著下降. 基于此,实验上获得了2.5 kW组束输出,绝对效率超过85%,通道间隔5 nm,光谱密度为0.51 kW/nm. 组束功率1 kW时,组束输出能保持好的光束质量;组束功率1.5 kW时光束质量恶化较明显,通过分析发现,组束光束质量的恶化主要受限于体光栅的色散及高功率下体光栅复杂的热畸变.
    Spectral beam combination based on volume Bragg gratings is an effective approach to obtaining high power laser output. In spectral beam combining system, spectral channel spacing will affect the number of non-combined sub-beams and the overall combined output power due to the finite available gain bandwidth. Based on coupled wave theory, a two-channel high power spectral beam combining model is proposed. By appropriately relaxing the requirements for the spectral channel spacing and line-width of sub-beams, the higher combined output power can be obtained but the spectral density does not significantly decrease. In this work, a 2-channel spectral beam combining system is demonstrated to present a 2.5 kW combined power with combining efficiency 85% by employing a transmitting volume Bragg grating. The combining system has a high spectral density of 0.51 kW/nm with 5 nm spectral spacing between channels. The output can keep a good beam quality when the combined power is less than 1 kW, while the significant degradation of combined beam quality occurs when output power is 1.5 kW and is restricted mainly by the dispersion properties and thermal effects of volume Bragg gratings. During this 2-channel beam combining process, no special active cooling measure is used. Interactions between laser radiation and the grating are verified. Thermal absorption of high power laser radiation in the grating will cause the temperature to remarkably increase, resulting in the thermal expansion of the grating period, which leads to the degradations of diffraction efficiency and the spectral selectivity. Research is also focused on the surface distortion, and the results indicate that the thermal-induced wave-front aberrations of the non-combined sub-beams lead to the deterioration of beam quality. Transmitted and diffracted beams experience wave-front aberrations to different degrees, leading to distinct beam deterioration.
      通信作者: 景峰, jingfeng09@sina.cn
    • 基金项目: 国家自然科学基金(批准号:61605183,11474257)资助的课题.
      Corresponding author: Jing Feng, jingfeng09@sina.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605183, 11474257).
    [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [2]

    Ke W W, Wang X J, Bao X F, Shu X J 2013 Opt. Express 21 14272

    [3]

    Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162

    [4]

    Yi T, Zhang J S, Zhu Y C, Gong H 2008 Chin. Phys. Lett. 25 2866

    [5]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2008 Opt. Express 16 13240

    [6]

    Bochove E J 2002 IEEE J. Quantum Electron. 38 432

    [7]

    Zhao L, Han J H, Li R P, Wang L G, Huang M J 2013 Chin. Phys. B 22 124207

    [8]

    Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567

    [9]

    Augst S J, Ranka J K, Fan T Y, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707

    [10]

    Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384

    [11]

    Jun W A 2006 Chin. Phys. Lett. 23 1459

    [12]

    Wang B, Mies E, Minden M, Sanchez A 2009 Opt. Lett. 34 863

    [13]

    Wang C H, Liu L R, Yan A M, Zhou Y, Liu D A, Hu Z J 2007 Chin. Phys. B 16 100

    [14]

    Andrusyak O, Smirnov V, Venus G, Vorobiev N, Glebov L 2009 Proc. SPIE 7195 71951Q

    [15]

    Wang L, Yan F P, Li Y F, Gong T R, Jian S S 2007 Acta Opt. Sin. 27 587 (in Chinese) [王琳, 延凤平, 李一凡, 龚桃荣, 简水生 2007 光学学报 27 587]

    [16]

    Andrusyak O, Smirnov V, Venus G, Glebov L 2009 Opt. Commun. 282 2560

    [17]

    Drachenberg D R, Andrusyak O, Cohanoschi I, Divliansky I, Mokhun O, Podvyaznyy A, Smirnov V, Venus G B, Glebov L B 2010 Proc. SPIE 7580 75801U

    [18]

    Drachenberg D, Divliansky I, Smirnov V, Venus G, Glebov L 2011 Proc. SPIE 7914 79141F

    [19]

    Ott D, Divliansky I, Anderson B, Venus G, Glebov L 2013 Opt. Express 21 29620

    [20]

    Bai H J, Wang Y F, Wang J Z, Yin Z Y, Lei C Q 2013 J. Appl. Opt. 34 279 (in Chinese) [白慧君, 汪岳峰, 王军阵, 殷智勇, 雷呈强 2013 应用光学 34 279]

    [21]

    Liu B, Li J 2013 Laser Tech. 37 656 (in Chinese) [刘兵, 李坚 2013 激光技术 37 656]

    [22]

    Andrusyak O, Ciapurin I, Smirnov V, Venus G, Vorobiev N, Glebov L 2008 Proc. SPIE 6873 687314

    [23]

    Ciapurin I V, Glebov L B, Smirnov V I 2006 Opt. Eng. 45 015802

    [24]

    Liang X B, Chen L M, Zhou T D, Li C, Huang Z H, Zhao L, Wang J J, Jing F 2015 High Power Laser and Particle Beams 27 071012 (in Chinese) [梁小宝, 陈良民, 周泰斗, 李超, 黄志华, 赵磊, 王建军, 景峰 2015 强激光与粒子束 27 071012]

  • [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [2]

    Ke W W, Wang X J, Bao X F, Shu X J 2013 Opt. Express 21 14272

    [3]

    Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162

    [4]

    Yi T, Zhang J S, Zhu Y C, Gong H 2008 Chin. Phys. Lett. 25 2866

    [5]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2008 Opt. Express 16 13240

    [6]

    Bochove E J 2002 IEEE J. Quantum Electron. 38 432

    [7]

    Zhao L, Han J H, Li R P, Wang L G, Huang M J 2013 Chin. Phys. B 22 124207

    [8]

    Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567

    [9]

    Augst S J, Ranka J K, Fan T Y, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707

    [10]

    Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384

    [11]

    Jun W A 2006 Chin. Phys. Lett. 23 1459

    [12]

    Wang B, Mies E, Minden M, Sanchez A 2009 Opt. Lett. 34 863

    [13]

    Wang C H, Liu L R, Yan A M, Zhou Y, Liu D A, Hu Z J 2007 Chin. Phys. B 16 100

    [14]

    Andrusyak O, Smirnov V, Venus G, Vorobiev N, Glebov L 2009 Proc. SPIE 7195 71951Q

    [15]

    Wang L, Yan F P, Li Y F, Gong T R, Jian S S 2007 Acta Opt. Sin. 27 587 (in Chinese) [王琳, 延凤平, 李一凡, 龚桃荣, 简水生 2007 光学学报 27 587]

    [16]

    Andrusyak O, Smirnov V, Venus G, Glebov L 2009 Opt. Commun. 282 2560

    [17]

    Drachenberg D R, Andrusyak O, Cohanoschi I, Divliansky I, Mokhun O, Podvyaznyy A, Smirnov V, Venus G B, Glebov L B 2010 Proc. SPIE 7580 75801U

    [18]

    Drachenberg D, Divliansky I, Smirnov V, Venus G, Glebov L 2011 Proc. SPIE 7914 79141F

    [19]

    Ott D, Divliansky I, Anderson B, Venus G, Glebov L 2013 Opt. Express 21 29620

    [20]

    Bai H J, Wang Y F, Wang J Z, Yin Z Y, Lei C Q 2013 J. Appl. Opt. 34 279 (in Chinese) [白慧君, 汪岳峰, 王军阵, 殷智勇, 雷呈强 2013 应用光学 34 279]

    [21]

    Liu B, Li J 2013 Laser Tech. 37 656 (in Chinese) [刘兵, 李坚 2013 激光技术 37 656]

    [22]

    Andrusyak O, Ciapurin I, Smirnov V, Venus G, Vorobiev N, Glebov L 2008 Proc. SPIE 6873 687314

    [23]

    Ciapurin I V, Glebov L B, Smirnov V I 2006 Opt. Eng. 45 015802

    [24]

    Liang X B, Chen L M, Zhou T D, Li C, Huang Z H, Zhao L, Wang J J, Jing F 2015 High Power Laser and Particle Beams 27 071012 (in Chinese) [梁小宝, 陈良民, 周泰斗, 李超, 黄志华, 赵磊, 王建军, 景峰 2015 强激光与粒子束 27 071012]

  • [1] 何婷, 田博宇, 邱蝶, 张彬. 基于直角锥面变形镜的薄管激光光束质量提升新方法. 物理学报, 2021, 70(17): 179501. doi: 10.7498/aps.70.20210603
    [2] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响. 物理学报, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [3] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生. 物理学报, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [4] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [5] 张志伦, 张芳芳, 林贤峰, 王世杰, 曹驰, 邢颍滨, 廖雷, 李进延. 国产部分掺杂光纤实现3 kW全光纤激光振荡输出. 物理学报, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [6] 刘家兴, 刘侠, 钟守东, 王健强, 张大鹏, 王兴龙. 光纤光栅对的参数匹配与激光输出特性. 物理学报, 2019, 68(11): 114205. doi: 10.7498/aps.68.20190178
    [7] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [8] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定. 物理学报, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [9] 吴真, 钟哲强, 杨磊, 张彬. 基于多层介质膜光栅的谱合成系统光束特性分析. 物理学报, 2016, 65(5): 054205. doi: 10.7498/aps.65.054205
    [10] 姜曼, 马鹏飞, 周朴, 王小林. 基于多层电介质光栅光谱合成的光束质量. 物理学报, 2016, 65(10): 104203. doi: 10.7498/aps.65.104203
    [11] 熊水东, 徐攀, 马明祥, 胡正良, 胡永明. 掺铒光纤环形激光器中饱和吸收光栅瞬态特性引发跳模的实验研究. 物理学报, 2014, 63(13): 134206. doi: 10.7498/aps.63.134206
    [12] 郭建增, 刘铁根, 牛志峰, 任晓明. 不同振荡放大比MOPA型化学激光器的数值模拟. 物理学报, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [13] 刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生. 波长可调谐取样光纤光栅激光器的输出特性研究. 物理学报, 2011, 60(2): 024207. doi: 10.7498/aps.60.024207
    [14] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [15] 陶汝茂, 司磊, 马阎星, 邹永超, 周朴. 高能光纤激光经准直系统后的光束质量研究. 物理学报, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [16] 肖玲, 程小劲, 徐剑秋. 分数自成像平面波导的光束组束. 物理学报, 2009, 58(6): 3870-3876. doi: 10.7498/aps.58.3870
    [17] 潘雷雷, 张彬, 阴素芹, 张艳. 掺Yb光纤激光器阵列谱合成系统的光束传输模型及光束特性分析. 物理学报, 2009, 58(12): 8289-8296. doi: 10.7498/aps.58.8289
    [18] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究. 物理学报, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [19] 吕昌贵, 崔一平, 王著元, 恽斌峰. 光纤布拉格光栅法布里-珀罗腔纵模特性研究. 物理学报, 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
    [20] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 唐映德. 抽运光分布对二极管抽运激光器振荡光光束质量的影响. 物理学报, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
计量
  • 文章访问数:  6139
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-01
  • 修回日期:  2017-01-22
  • 刊出日期:  2017-04-05

/

返回文章
返回