搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析

刘景良 陈薪羽 王睿明 吴春婷 金光勇

引用本文:
Citation:

基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析

刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇

Design and analysis of 90° image rotating four-mirror non-planar ring resonator based on mid-infrared optical parametric oscillator beam quality optimization

Liu Jing-Liang, Chen Xin-Yu, Wang Rui-Ming, Wu Chun-Ting, Jin Guang-Yong
PDF
HTML
导出引用
  • 为改善中红外光参量振荡器(OPO)激光输出光束质量, 设计了一种90°像旋转四镜非平面环形腔型结构. 通过建立单位球等效计算方法, 对此种特殊腔型结构存在的像旋转角进行计算, 并由此确定了适用于中红外OPO运行的90°像旋转谐振腔结构相关参数. 在此基础上进一步建立了非对称轴环形腔中光场模式自再现模型, 分析得出随着像旋转角由0°向90°变化, 谐振腔内光场模式逐渐均匀化, 当旋转角为90°时, 基模以及高阶模都表现出非常好的中心对称性. 基于此采用中红外ZnGeP2 OPO对所设计的腔型参数进行实验测量, 实现了光束质量$M^2_X=1.81 $$M^2_Y=1.61 $. 由此可以证明所设计的90°像旋转四镜非平面环形腔对中红外OPO激光系统的输出光束质量的优化有显著效果.
    Mid-infrared optical parametric oscillator (OPO) operating in the mid-infrared transmission window (3—5 μm wavelength range) is one of hot issues in the field of laser system. It has many applications in environmental detection, remote sensing, and medicine. Besides, this laser system is used as a key component of infrared countermeasures. The optical damage limit of nonlinear crystal is a great challenge to the mid-infrared OPO which is pumped by a nanosecond laser source. Therefore, the pump beam diameter should be appropriately increased to avoid damaging the crystal when scaling a nanosecond OPO to high pulse energy. The result of this design is that the Fresnel number in the cavity is increased and the beam quality is deteriorated. In order to improve the beam quality of mid-infrared OPO laser, a 90° image-rotating four-mirror non-planar ring resonator structure is designed. The advantages of this design include the general ring resonators, such as greatly reduced feedback into the pump laser and the avoidance of optical damage caused by standing wave cavity structure. Most importantly, the image rotating cavity can uniform the beam in the cavity and improve the beam quality. In this paper, the equivalent sphere representation of a four-mirror nonplanar ring resonator is established, and the image rotation angle of this special cavity structure is calculated. Based on this method, the parameters related to the 90° image rotating resonator structure suitable for mid-infrared OPO operation are designed. The self-reproduction of the transverse mode in the axially-asymmetric resonator is further established. It is found that the transverse mode in the resonator is gradually uniformed as the rotation angle of the image changes from 0° to 90°. When the rotation angle is 90°, the fundamental mode and the high-order mode both exhibit very good central symmetry. Finally, the mid-infrared ZnGeP2 OPO laser with the 90° image rotating resonator structure is used to verify the improvement of beam quality. The beam quality of $M_X^2=1.81 $ and $M_Y^2=1.61$ are achieved. It can be proved that the 90° rotating four-mirror non-planar ring resonator has a significant effect on the optimization of the output beam quality of the mid-infrared OPO laser system.
      通信作者: 金光勇, jgycust@163.com
    • 基金项目: 吉林省教育厅“十三五”科学技术研究项目(批准号: JJKH20181105KJ)、吉林省科技发展计划 (批准号: 20180101033JC)和长春市科技计划项目地院(校、所)合作专项(批准号: 17DY027)资助的课题
      Corresponding author: Jin Guang-Yong, jgycust@163.com
    • Funds: Project supported by the Foundation of Education Department of Jilin Province, China (Grant No. JJKH20181105KJ), the Foundation of Jilin Province Science and Technology Department, China (Grant No. 20180101033JC), and the Cooperation Foundation of Changchun Science and Technology Bureau, China (Grant No. 17DY027)
    [1]

    Mürtz M, Hering P 2008 Mid-Infrared Coherent Sources and Applications: Online Monitoring of Exhaled Breath Using Mid-Infrared Laser Spectroscopy (Vol. 1) (Germany: Springer) p535

    [2]

    Geiser P, Willer U, Walter D, Schade W 2006 Appl. Phys. B 83 175

    [3]

    Waynant R W, Ilev I K, Gannot I 2001 Philos. Trans. R. Soc. B 359 635Google Scholar

    [4]

    Stoeppler G, Schellhorn M, Eichhorn M 2012 Laser Phys. 22 1095Google Scholar

    [5]

    任钢, 钟鸣, 李彤, 牛瑞华, 曾饮勇, 龚赤冲, 何衡湘, 于淑范, 王滨 2006 红外与激光工程 3 5

    Ren G, Zhong M, Li T, Niu R H, Zeng Q Y, Gong C C, He H X, Yu S F, Wang B 2006 Infrared Laser Eng. 3 5

    [6]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 22 234Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 22 234Google Scholar

    [7]

    王礼, 杨经纬, 蔡旭武, 王金涛, 吴海信, 吴先友, 江海河 2014 中国激光 41 37

    Wang L, Yang J W, Cai X W, Wang J T, Wu H X, Wu X Y, Jiang H H 2014 Chinese J. Lasers 41 37

    [8]

    Kadwani P, Gebhardt M, Gaida C, Shah L, Richardson M 2013 CLEO: Applications and Technology JW2A 29

    [9]

    姚宝权, 王月珠, 柳强, 王骐 2001 中国激光 28 693Google Scholar

    Yao B Q, Wang Y Z, Liu Q, Wang Q 2001 Chinese J. Lasers 28 693Google Scholar

    [10]

    Rustad G, Øystein Farsund, Arisholm G 2010 SPIE Solid State Lasers and Amplifiers IV, and High-Power Lasers Brussels, Belgium April 12−16, 7721 77210J

    [11]

    Lippert E, Fonnum H, Arisholm G, Stenersen K 2010 Opt. Express 18 26475Google Scholar

    [12]

    Haakestad M W, Fonnum H, Lippert E 2014 Opt. Express 22 8556Google Scholar

    [13]

    Shen Y J, Yao B Q, Cui Z, Duan X M, Ju Y L, Wang Y Z 2014 Appl. Phys. B 117 127Google Scholar

    [14]

    Qian C P, Shen Y J, Dai T Y, Duan X M, Yao B Q 2016 SPIE High-Power Lasers and Applications VIII Beijing, China October 12−14, 10016 100160G

    [15]

    安然, 范小贞, 卢建新, 文侨 2018 物理学报 67 074201Google Scholar

    An R, Fan X Z, Lu J X, Wen Q 2018 Acta Phys. Sin. 67 074201Google Scholar

    [16]

    蔡小天, 李霄, 赵国民 2017 光学学报 37 1219001

    Cai X T, Li X, Zhao G M 2017 Acta Opt. Sin. 37 1219001

    [17]

    方洪烈 1981 光学谐振腔理论 第23页

    Fang H L 1981 The Principle of the Optical Resonator (Vol. 1) (Beijing: Science Press) p23 (in Chinese)

    [18]

    张楚宾 1959 球面三角学 (北京: 高等教育出版社) 第14页

    Zhang C B 1959 Spherical Trigonometry (Vol. 1) (Beijing: Higher Education Press) p14 (in Chinese)

    [19]

    吕百达 2003激光光学 光束描述、传输变换与光腔技术物理(北京: 高等教育出版社) 第13页

    Lu B D 2003 Laser Optics: Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (Vol. 3) (Beijing: Higher Education Press) p13 (in Chinese)

    [20]

    汪之国, 肖光宗, 丁志超, 卢广峰, 杨开勇 2015 中国激光 42 s102009

    Wang Z G, Xiao G Z, Ding Z C, Lu G F, Yang K Y 2015 Chinese J. Lasers 42 s102009

  • 图 1  中红外OPO四镜非平面环形腔示意图

    Fig. 1.  Schematic diagram of a four-mirror non-planar ring resonator mid-infrared OPO laser.

    图 2  非平行入射平面的参考系和像旋转示意图

    Fig. 2.  Diagram of reference frame and image rotation for nonparallel planes of incidence.

    图 3  简单四镜非平面环形腔示意图

    Fig. 3.  Example of a four-mirror nonplanar ring resonator.

    图 4  四镜非平面环形腔的两种等效球体表示方式 (a) 透明等效单位球体; (b) 非透明等效单位球体

    Fig. 4.  Two equivalent sphere representations of a four-mirror nonplanar ring resonator: (a) Transparent equivalent unit sphere; (b) non-transparent equivalent unit sphere

    图 5  90°像旋转四镜非平面环形腔三视图及单位球表示

    Fig. 5.  Diagram and unit sphere representation of a 90° image rotating four-mirror non-planar ring resonator.

    图 6  不同旋转角下四镜非平面环形腔内横模光强分布 (a) 0°旋转角光强分布; (b) 5°旋转角光强分布; (c) 45°旋转角光强分布; (d) 90°旋转角光强分布

    Fig. 6.  The intensity distribution of transverse mode in a four-mirror non-planar ring resonator at different rotation angles: (a) The intensity distribution at 0° rotation angle; (b) the intensity distribution at 5° rotation angle; (c) the intensity distribution at 45° rotation angle; (d) the intensity distribution at 90° rotation angle.

    图 7  90°像旋转四镜非平面环形腔内横模光强分布 (a) TEM00模; (b) TEM01模; (c) TEM10

    Fig. 7.  The intensity distribution of transverse mode in a 90° image rotating four-mirror non-planar ring resonator: (a) TEM00 mode; (b) TEM01 mode; (c) TEM10 mode

    图 8  不同腔型下中红外ZnGeP2 OPO输出光束质量 (a) 平平腔; (b) 90°像旋转四镜非平面环形腔

    Fig. 8.  The beam quality based on ZnGeP2 OPO in different resonators: (a) Plano-plano resonator; (b) 90° image rotating four-mirror non-planar ring resonator.

  • [1]

    Mürtz M, Hering P 2008 Mid-Infrared Coherent Sources and Applications: Online Monitoring of Exhaled Breath Using Mid-Infrared Laser Spectroscopy (Vol. 1) (Germany: Springer) p535

    [2]

    Geiser P, Willer U, Walter D, Schade W 2006 Appl. Phys. B 83 175

    [3]

    Waynant R W, Ilev I K, Gannot I 2001 Philos. Trans. R. Soc. B 359 635Google Scholar

    [4]

    Stoeppler G, Schellhorn M, Eichhorn M 2012 Laser Phys. 22 1095Google Scholar

    [5]

    任钢, 钟鸣, 李彤, 牛瑞华, 曾饮勇, 龚赤冲, 何衡湘, 于淑范, 王滨 2006 红外与激光工程 3 5

    Ren G, Zhong M, Li T, Niu R H, Zeng Q Y, Gong C C, He H X, Yu S F, Wang B 2006 Infrared Laser Eng. 3 5

    [6]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 22 234Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 22 234Google Scholar

    [7]

    王礼, 杨经纬, 蔡旭武, 王金涛, 吴海信, 吴先友, 江海河 2014 中国激光 41 37

    Wang L, Yang J W, Cai X W, Wang J T, Wu H X, Wu X Y, Jiang H H 2014 Chinese J. Lasers 41 37

    [8]

    Kadwani P, Gebhardt M, Gaida C, Shah L, Richardson M 2013 CLEO: Applications and Technology JW2A 29

    [9]

    姚宝权, 王月珠, 柳强, 王骐 2001 中国激光 28 693Google Scholar

    Yao B Q, Wang Y Z, Liu Q, Wang Q 2001 Chinese J. Lasers 28 693Google Scholar

    [10]

    Rustad G, Øystein Farsund, Arisholm G 2010 SPIE Solid State Lasers and Amplifiers IV, and High-Power Lasers Brussels, Belgium April 12−16, 7721 77210J

    [11]

    Lippert E, Fonnum H, Arisholm G, Stenersen K 2010 Opt. Express 18 26475Google Scholar

    [12]

    Haakestad M W, Fonnum H, Lippert E 2014 Opt. Express 22 8556Google Scholar

    [13]

    Shen Y J, Yao B Q, Cui Z, Duan X M, Ju Y L, Wang Y Z 2014 Appl. Phys. B 117 127Google Scholar

    [14]

    Qian C P, Shen Y J, Dai T Y, Duan X M, Yao B Q 2016 SPIE High-Power Lasers and Applications VIII Beijing, China October 12−14, 10016 100160G

    [15]

    安然, 范小贞, 卢建新, 文侨 2018 物理学报 67 074201Google Scholar

    An R, Fan X Z, Lu J X, Wen Q 2018 Acta Phys. Sin. 67 074201Google Scholar

    [16]

    蔡小天, 李霄, 赵国民 2017 光学学报 37 1219001

    Cai X T, Li X, Zhao G M 2017 Acta Opt. Sin. 37 1219001

    [17]

    方洪烈 1981 光学谐振腔理论 第23页

    Fang H L 1981 The Principle of the Optical Resonator (Vol. 1) (Beijing: Science Press) p23 (in Chinese)

    [18]

    张楚宾 1959 球面三角学 (北京: 高等教育出版社) 第14页

    Zhang C B 1959 Spherical Trigonometry (Vol. 1) (Beijing: Higher Education Press) p14 (in Chinese)

    [19]

    吕百达 2003激光光学 光束描述、传输变换与光腔技术物理(北京: 高等教育出版社) 第13页

    Lu B D 2003 Laser Optics: Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (Vol. 3) (Beijing: Higher Education Press) p13 (in Chinese)

    [20]

    汪之国, 肖光宗, 丁志超, 卢广峰, 杨开勇 2015 中国激光 42 s102009

    Wang Z G, Xiao G Z, Ding Z C, Lu G F, Yang K Y 2015 Chinese J. Lasers 42 s102009

  • [1] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 物理学报, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [2] 何婷, 田博宇, 邱蝶, 张彬. 基于直角锥面变形镜的薄管激光光束质量提升新方法. 物理学报, 2021, 70(17): 179501. doi: 10.7498/aps.70.20210603
    [3] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响. 物理学报, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [4] 张志伦, 张芳芳, 林贤峰, 王世杰, 曹驰, 邢颍滨, 廖雷, 李进延. 国产部分掺杂光纤实现3 kW全光纤激光振荡输出. 物理学报, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [5] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究. 物理学报, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [6] 周泰斗, 梁小宝, 李超, 黄志华, 封建胜, 赵磊, 王建军, 景峰. 基于透射型体布拉格光栅的两通道2.5 kW光谱组束输出. 物理学报, 2017, 66(8): 084204. doi: 10.7498/aps.66.084204
    [7] 吴真, 钟哲强, 杨磊, 张彬. 基于多层介质膜光栅的谱合成系统光束特性分析. 物理学报, 2016, 65(5): 054205. doi: 10.7498/aps.65.054205
    [8] 姜曼, 马鹏飞, 周朴, 王小林. 基于多层电介质光栅光谱合成的光束质量. 物理学报, 2016, 65(10): 104203. doi: 10.7498/aps.65.104203
    [9] 郭建增, 刘铁根, 牛志峰, 任晓明. 不同振荡放大比MOPA型化学激光器的数值模拟. 物理学报, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [10] 刘飞, 季小玲. 双曲余弦高斯列阵光束在湍流大气中的光束传输因子. 物理学报, 2011, 60(1): 014216. doi: 10.7498/aps.60.014216
    [11] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [12] 陶汝茂, 司磊, 马阎星, 邹永超, 周朴. 高能光纤激光经准直系统后的光束质量研究. 物理学报, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [13] 王文鹏, 许周速, 徐军, 陈钢. 封离式He-N2-CO2激光器横模特性的测量与分析. 物理学报, 2009, 58(8): 5423-5428. doi: 10.7498/aps.58.5423
    [14] 潘雷雷, 张彬, 阴素芹, 张艳. 掺Yb光纤激光器阵列谱合成系统的光束传输模型及光束特性分析. 物理学报, 2009, 58(12): 8289-8296. doi: 10.7498/aps.58.8289
    [15] 肖玲, 程小劲, 徐剑秋. 分数自成像平面波导的光束组束. 物理学报, 2009, 58(6): 3870-3876. doi: 10.7498/aps.58.3870
    [16] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究. 物理学报, 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [17] 王 宁, 陆雨田, 李晓莉, 焦志勇. InnoSlab混合腔输出光束质量的理论研究. 物理学报, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [18] 张 艳, 张 彬, 祝颂军. 谱合成光束特性的模拟分析. 物理学报, 2007, 56(8): 4590-4595. doi: 10.7498/aps.56.4590
    [19] 王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫. 可用于超精细加工的高重复率、高光束质量飞秒再生放大脉冲的产生研究. 物理学报, 2004, 53(1): 87-92. doi: 10.7498/aps.53.87
    [20] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 唐映德. 抽运光分布对二极管抽运激光器振荡光光束质量的影响. 物理学报, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
计量
  • 文章访问数:  5972
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-11
  • 修回日期:  2019-06-09
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回