搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究

陶汝茂 周朴 王小林 司磊 刘泽金

引用本文:
Citation:

高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究

陶汝茂, 周朴, 王小林, 司磊, 刘泽金

Experimental study on mode instability in high power all-fiber master oscillator power amplifer fiber lasers

Tao Ru-Mao, Zhou Pu, Wang Xiao-Lin, Si Lei, Liu Ze-Jin
PDF
导出引用
  • 模式不稳定指高功率光纤激光随着输出功率提升发生的模式突变,会导致光束质量下降,限制了衍射极限光束质量光纤激光输出功率的提升. 本文研究了全光纤结构主振荡功率放大器中的模式不稳定现象. 结果表明,全光纤结构主振荡功率放大器中的模式不稳定现象会导致放大器斜率效率下降;理论计算表明,对于20/400阶跃折射率大模场双包层掺镱光纤,注入种子功率在百瓦左右时,模式不稳定发生的阈值功率在1 kW 左右;热效应是模式不稳定现象发生的根源.
    Mode instability (MI) is an abrupt mode change when the average output power increases above a certain threshold power, which results in degrading beam quality and restricting the enhancement of power output for diffraction-limited high power fiber laser. The experimental study on MI in all-fiberized master oscillator power amplifer (MOPA) is presented in detail for the first time. It is revealed that MI in all-fiberized MOPA results in reducing the slope efficiency. The theoretical threshold power of MI for 20/400 step-index large-mode-area double-cladding Yb-doped fiber is about 1 kW and MI is rooted mainly from the thermal effect.
    • 基金项目: 国家自然科学基金(批准号:11274386)、国防科技大学优秀研究生创新项目(批准号:B120704)和湖南省研究生科研创新项目(批准号:CX2012B035)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274386), the Innovation Foundation for Excellent Graduates in National University of Defense Technology, China (Grant No. B120704), and the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2012B035).
    [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [2]
    [3]

    Zhu J J, Du W B, Zhou P, et al. 2012 Acta Phys. Sin. 61 064209 (in Chinese) [朱家健, 杜文博, 周朴 等 2012 物理学报 61 064209]

    [4]
    [5]

    Yang W Q, Hou J, Song R, et al. 2011 Acta Phys. Sin. 60 84210 (in Chinese) [杨未强, 侯静, 宋锐 等 2011 物理学报 60 84210]

    [6]

    Xiao H, Wu W M, Xu J M, et al. 2011 Chin. Phys. B 20 114208

    [7]
    [8]

    Jauregui C, Eidam T, Otto H J, et al. 2012 Opt. Express 20 12912

    [9]
    [10]

    Eidam T, Wirth C, Jauregui C, et al. 2011 Opt. Express 19 13218

    [11]
    [12]

    Engin D, Lu W, Verdun H, Gupta S 2013 Proc. of SPIE 8733 87330J

    [13]
    [14]
    [15]

    Eidam T, Hanf S, Seise E, et al. 2010 Opt. Lett. 35 94

    [16]
    [17]

    Stutzki F, Otto H J, Jansen F, et al. 2011 Opt. Lett. 36 4572

    [18]
    [19]

    Otto H-J, Jauregui C, Stutzki F 2013 Opt. Express 21 17285

    [20]

    Laurila M, Jorgensen M M, Hansen K R, et al. 2012 Opt. Express 20 5742

    [21]
    [22]
    [23]

    Jansen F, Stutzki F, Otto H J, et al. 2012 Opt. Express 20 3997

    [24]
    [25]

    Ward B, Robin C, Dajani I, et al. 2012 Opt. Express 20 11407

    [26]
    [27]

    Otto H-J, Stutzki F, Jansen F, et al. 2012 Opt. Express 20 15710

    [28]

    Haarlammert N, Vries O, Liem A, et al. 2012 Opt. Express 20 13274

    [29]
    [30]

    Jauregui C, Eidam T, Limpert J, et al. 2011 Opt. Express 19 3258

    [31]
    [32]

    Smith A V, Smith J J 2011 Opt. Express 19 10180

    [33]
    [34]

    Smith A V, Smith J J 2013 Opt. Express 21 2606

    [35]
    [36]
    [37]

    Smith A V, Smith J J 2012 Opt. Express 20 24545

    [38]

    Hansen K R, Alkeskjold T T, Broeng J, et al. 2012 Opt. Lett. 37 2382

    [39]
    [40]
    [41]

    Hansen K R, Alkeskjold T T, Broeng J, et al. 2013 Opt. Express 21 1944

    [42]
    [43]

    Dong L 2013 Opt. Express 21 2642

    [44]

    Hu I N, Zhu C, Zhang C, et al. 2013 Proc. SPIE 8601 860109

    [45]
    [46]

    Jauregui C, Ottoa H J, Jansena F, et al. 2013 Proc. SPIE 8601 86010F

    [47]
    [48]

    Jauregui C, Otto H J, Stutzki F, et al. 2013 Opt. Express 21 19375

    [49]
    [50]

    Ward B 2013 Opt. Express 21 12053

    [51]
    [52]
    [53]

    Naderi S, Dajani I, Madden T, et al. 2013 Opt. Express 21 16111

    [54]

    Wirth C, Schreiber T, Rekas M, et al. 2010 Proc. SPIE 7580 75801H-6

    [55]
    [56]
    [57]

    Schmidt O, Rekas M, Wirth C, et al. 2011 Opt. Express 19 4421

    [58]

    Eidam T, Hdrich S, Jansen F, et al. 2011 Opt. Express 19 8656

    [59]
    [60]
    [61]

    Stutzki F, Jansen F, Eidamet T, et al. 2011 Opt. Lett. 36 689

    [62]

    Jrgensen M M, Laurila M, Noordegraaf D, et al. 2013 Proc. SPIE 8601 86010U

    [63]
    [64]

    Wirth C, Schmidt O, Tsybin I, et al. 2011 Opt. Lett. 36 3118

    [65]
    [66]
    [67]

    Jocher C, Eidama T, Hdricha S, et al. 2013 Proc. SPIE 8601 86011F

    [68]

    Karow M, Tnnermann H, Neumann J, et al. 2012 Opt. Lett. 37 4242

    [69]
  • [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [2]
    [3]

    Zhu J J, Du W B, Zhou P, et al. 2012 Acta Phys. Sin. 61 064209 (in Chinese) [朱家健, 杜文博, 周朴 等 2012 物理学报 61 064209]

    [4]
    [5]

    Yang W Q, Hou J, Song R, et al. 2011 Acta Phys. Sin. 60 84210 (in Chinese) [杨未强, 侯静, 宋锐 等 2011 物理学报 60 84210]

    [6]

    Xiao H, Wu W M, Xu J M, et al. 2011 Chin. Phys. B 20 114208

    [7]
    [8]

    Jauregui C, Eidam T, Otto H J, et al. 2012 Opt. Express 20 12912

    [9]
    [10]

    Eidam T, Wirth C, Jauregui C, et al. 2011 Opt. Express 19 13218

    [11]
    [12]

    Engin D, Lu W, Verdun H, Gupta S 2013 Proc. of SPIE 8733 87330J

    [13]
    [14]
    [15]

    Eidam T, Hanf S, Seise E, et al. 2010 Opt. Lett. 35 94

    [16]
    [17]

    Stutzki F, Otto H J, Jansen F, et al. 2011 Opt. Lett. 36 4572

    [18]
    [19]

    Otto H-J, Jauregui C, Stutzki F 2013 Opt. Express 21 17285

    [20]

    Laurila M, Jorgensen M M, Hansen K R, et al. 2012 Opt. Express 20 5742

    [21]
    [22]
    [23]

    Jansen F, Stutzki F, Otto H J, et al. 2012 Opt. Express 20 3997

    [24]
    [25]

    Ward B, Robin C, Dajani I, et al. 2012 Opt. Express 20 11407

    [26]
    [27]

    Otto H-J, Stutzki F, Jansen F, et al. 2012 Opt. Express 20 15710

    [28]

    Haarlammert N, Vries O, Liem A, et al. 2012 Opt. Express 20 13274

    [29]
    [30]

    Jauregui C, Eidam T, Limpert J, et al. 2011 Opt. Express 19 3258

    [31]
    [32]

    Smith A V, Smith J J 2011 Opt. Express 19 10180

    [33]
    [34]

    Smith A V, Smith J J 2013 Opt. Express 21 2606

    [35]
    [36]
    [37]

    Smith A V, Smith J J 2012 Opt. Express 20 24545

    [38]

    Hansen K R, Alkeskjold T T, Broeng J, et al. 2012 Opt. Lett. 37 2382

    [39]
    [40]
    [41]

    Hansen K R, Alkeskjold T T, Broeng J, et al. 2013 Opt. Express 21 1944

    [42]
    [43]

    Dong L 2013 Opt. Express 21 2642

    [44]

    Hu I N, Zhu C, Zhang C, et al. 2013 Proc. SPIE 8601 860109

    [45]
    [46]

    Jauregui C, Ottoa H J, Jansena F, et al. 2013 Proc. SPIE 8601 86010F

    [47]
    [48]

    Jauregui C, Otto H J, Stutzki F, et al. 2013 Opt. Express 21 19375

    [49]
    [50]

    Ward B 2013 Opt. Express 21 12053

    [51]
    [52]
    [53]

    Naderi S, Dajani I, Madden T, et al. 2013 Opt. Express 21 16111

    [54]

    Wirth C, Schreiber T, Rekas M, et al. 2010 Proc. SPIE 7580 75801H-6

    [55]
    [56]
    [57]

    Schmidt O, Rekas M, Wirth C, et al. 2011 Opt. Express 19 4421

    [58]

    Eidam T, Hdrich S, Jansen F, et al. 2011 Opt. Express 19 8656

    [59]
    [60]
    [61]

    Stutzki F, Jansen F, Eidamet T, et al. 2011 Opt. Lett. 36 689

    [62]

    Jrgensen M M, Laurila M, Noordegraaf D, et al. 2013 Proc. SPIE 8601 86010U

    [63]
    [64]

    Wirth C, Schmidt O, Tsybin I, et al. 2011 Opt. Lett. 36 3118

    [65]
    [66]
    [67]

    Jocher C, Eidama T, Hdricha S, et al. 2013 Proc. SPIE 8601 86011F

    [68]

    Karow M, Tnnermann H, Neumann J, et al. 2012 Opt. Lett. 37 4242

    [69]
  • [1] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2022, 71(3): 034205. doi: 10.7498/aps.71.20211751
    [2] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211751
    [3] 张志伦, 张芳芳, 林贤峰, 王世杰, 曹驰, 邢颍滨, 廖雷, 李进延. 国产部分掺杂光纤实现3 kW全光纤激光振荡输出. 物理学报, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [4] 刘硕, 白建东, 王杰英, 何军, 王军民. 铯原子nP3/2 (n = 70—94)里德伯态的紫外单光子激发及量子亏损测量. 物理学报, 2019, 68(7): 073201. doi: 10.7498/aps.68.20182283
    [5] 陈益沙, 廖雷, 李进延. 数值孔径对掺镱光纤振荡器模式不稳定阈值影响的实验研究. 物理学报, 2019, 68(11): 114206. doi: 10.7498/aps.68.20182257
    [6] 罗雪雪, 陶汝茂, 刘志巍, 史尘, 张汉伟, 王小林, 周朴, 许晓军. 少模光纤放大器中的准静态模式不稳定实验研究. 物理学报, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [7] 罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福. 光纤放大器放大自发辐射特性与高温易损点位置. 物理学报, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [8] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [9] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究. 物理学报, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [10] 董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇. 300 W侧面分布式抽运掺Yb全光纤放大器. 物理学报, 2015, 64(8): 084205. doi: 10.7498/aps.64.084205
    [11] 黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪. 激光二极管抽运氦气冷却钕玻璃叠片激光放大器热致波前畸变和应力双折射的数值模拟和实验研究. 物理学报, 2015, 64(8): 087801. doi: 10.7498/aps.64.087801
    [12] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [13] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究 . 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [14] 肖虎, 冷进勇, 吴武明, 王小林, 马阎星, 周朴, 许晓军, 赵国民. 同带抽运高效率光纤放大器. 物理学报, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [15] 杨若夫, 杨平, 沈锋. 基于能动分块反射镜的两路光纤放大器相位探测及其相干合成实验研究. 物理学报, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [16] 董浩, 任敏, 张磊, 邓宁, 陈培毅. 电流驱动磁化翻转中的热效应. 物理学报, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [17] 任广军, 魏臻, 张强, 姚建铨. 掺钕保偏光纤放大器的研究. 物理学报, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [18] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [19] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [20] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
计量
  • 文章访问数:  3829
  • PDF下载量:  665
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-22
  • 修回日期:  2013-12-02
  • 刊出日期:  2014-04-05

高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究

  • 1. 国防科学技术大学光电科学与工程学院, 长沙 410073
    基金项目: 国家自然科学基金(批准号:11274386)、国防科技大学优秀研究生创新项目(批准号:B120704)和湖南省研究生科研创新项目(批准号:CX2012B035)资助的课题.

摘要: 模式不稳定指高功率光纤激光随着输出功率提升发生的模式突变,会导致光束质量下降,限制了衍射极限光束质量光纤激光输出功率的提升. 本文研究了全光纤结构主振荡功率放大器中的模式不稳定现象. 结果表明,全光纤结构主振荡功率放大器中的模式不稳定现象会导致放大器斜率效率下降;理论计算表明,对于20/400阶跃折射率大模场双包层掺镱光纤,注入种子功率在百瓦左右时,模式不稳定发生的阈值功率在1 kW 左右;热效应是模式不稳定现象发生的根源.

English Abstract

参考文献 (69)

目录

    /

    返回文章
    返回