搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

信号在时变等离子体中的传播特性

杨敏 李小平 刘彦明 石磊 谢楷

引用本文:
Citation:

信号在时变等离子体中的传播特性

杨敏, 李小平, 刘彦明, 石磊, 谢楷

Propagation of electromagnetic signals in the time-varying plasma

Yang Min, Li Xiao-Ping, Liu Yan-Ming, Shi Lei, Xie Kai
PDF
导出引用
  • 高速飞行器等离子鞘套由于飞行姿态调整、湍流、非均匀烧蚀等因素的影响,使其等离子体参数存在时变特性. 针对这种传输介质的快速时变特性引起的电波幅度、相位上的寄生调制效应,本文利用大面积辉光放电等离子体产生装置,搭建了等离子体中信号传输实验系统,进行了S频段的单频信号与调制信号传输实验,观测验证了调制效应的存在,且其调制频率与等离子体变化频率具有一致性,进一步分析了等离子参数与寄生调制效应的关系. 理论和实验结果表明:即使当载波频率大于等离子频率时,时变等离子引起的寄生调制效应也会使传输信号的星座图发生旋转,造成其判决容差裕度变小,通信可靠性下降,并且载波频率越接近等离子频率时,其寄生调制效应越强烈.
    Because the boundary layer of the plasma sheath formed around the hypersonic vehicle flying in atmosphere is turbulent, the parameters of plasma sheath, such as the electron density, become time-varying. Both the amplitude and phase of electromagnetic (EM) signal are modulated by the time-varying plasma. By using a large volume uniform plasma generator, an experimental system for the propagation of EM signals in the time-varying plasma is built. The propagation experiment of the monochromatic signals and binary phase shift keying signals in S band of plasma is conducted. The modulations of the amplitude and phase of EM signal are proved, and the rotation of constellation of the multiple phase shift keying (MPSK) signal is observed. The experimental and simulation results demonstrate that the frequency of parasitic modulation is the same as that of time-varying plasma and the parasitical modulation intensity varies in proportion to the ratio of the electron density profile to the carrier frequency. Even if the carrier frequency is higher than the plasma frequency, the parasitical modulation will make the constellation of the MPSK signals circumvolve, and the bit error rate higher.
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB340205)、国家自然科学基金青年科学基金(批准号:61301173)和中央高校基本科研业务费(批准号:K72125087)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB340205), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 613001173), and the Fundamental Research Fund for the Central Universities, China (Grant No. K72125087).
    [1]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. 7879

    [2]

    Hartunian R A, Stewart G E, Ravn O 2007 Causes and Mitigation of Radio Frequency Blackout During Reentry of Reusable Launch Vehicles (El Segundo: Aerosp. Corporation) p1

    [3]
    [4]

    Potter D L 2006 The 37th AIAA Plasma Dynamics and Lasers Conference San Francisco, USA, June 5-8, 2006 p235

    [5]
    [6]

    Wang B Y 1982 J. Astronau. 3 81 (in Chinese) [王柏懿 1982 宇航学报 3 81]

    [7]
    [8]
    [9]

    Daniel G, Joseph S, Robert S 1992 Electromagnetic Wave Propagation in Unmagnetized Plasmas (Malibu, CA: Hughes Research Laboratories) p1

    [10]

    Heald C B, Wharton M A 1965 Plasma Diagnostics with Microwaves (1st Ed.) (New York: John Wiley Sons) p120

    [11]
    [12]

    Ma C G, Zhao Q, Luo X G, He G, Zheng L, Liu J W 2011 Acta Phys. Sin. 60 055201 (in Chinese) [马春光, 赵青, 罗先刚, 何果, 郑玲, 刘建卫 2011 物理学报 60 055201]

    [13]
    [14]

    Zheng L, Zhao Q, Luo X G, Ma P, Liu S Z, Huang C, Xing X J, Zhang C Y, Chen X L 2012 Acta Phys. Sin. 61 155203 (in Chinese) [郑灵, 赵青, 罗先刚, 马平,刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖 2012 物理学报 61 155203]

    [15]
    [16]

    Zheng L, Zhao Q, Liu S Z, Xing X J 2012 Acta Phys. Sin. 61 245202 (in Chinese) [郑灵, 赵青, 刘述章, 邢晓俊 2012 物理学报 61 245202]

    [17]
    [18]
    [19]

    Wu R H, Liu H Y, Liu J Q, Chang Q 2013 J. Beijing Univ. Aeronaut. Astronaut. 18 585 (in Chinese) [邬润辉, 刘洪艳, 刘佳琪, 常青 2013 北京航空航天大学学报 18 585]

    [20]

    Gillman E D, Foster J E, Blankson I M 2007 Review of Leading Approaches for Mitigating Hypersonic Vehicle Communications Blackout and a Method of Ceramic Particulate Injection Via Cathode Spot Arcs for Blackout Mitigation (Cleveland, Ohio: NASA) p8

    [21]
    [22]
    [23]

    Potter D L 2011 The 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference San Francisco, USA, April 11-14, 2011 p2153

    [24]
    [25]

    Anthony D, Richard G 1971 AIAA J. 8 1533

    [26]

    Lin T C, Sproul L K 2006 Comput. Fluids 35 703

    [27]
    [28]

    Shawn G O, Brian E G, Fergason S D 1999 IEEE Tran. Plasma Sci. 27 587

    [29]
    [30]

    Yang M, Li X P, Xie K, Liu Y M, Shi L 2013 J. Astronaut. 34 842 (in Chinese) [杨敏, 李小平, 谢楷, 刘彦明, 石磊 2013 宇航学报 34 842]

    [31]
    [32]
    [33]

    Yang M, Li X P, Xie K, Liu Y M, Liu D L 2013 Phys. Plasmas 20 1

    [34]

    Zhu B, Yang J, Huang X G, Mao G W, Liu J P 2006 Acta Phys. Sin. 55 2352 (in Chinese) [朱冰, 杨娟, 黄学刚, 毛根旺, 刘俊平 2006 物理学报 55 2352]

    [35]
    [36]
    [37]

    Wang L, Cao J X, Wang Y, Niu T Y, Wang K, Zhu Y 2007 Acta Phys. Sin. 56 1429 (in Chinese) [王亮, 曹金祥, 王艳, 牛田野, 王舸, 朱颖 2007 物理学报 56 1429]

  • [1]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. 7879

    [2]

    Hartunian R A, Stewart G E, Ravn O 2007 Causes and Mitigation of Radio Frequency Blackout During Reentry of Reusable Launch Vehicles (El Segundo: Aerosp. Corporation) p1

    [3]
    [4]

    Potter D L 2006 The 37th AIAA Plasma Dynamics and Lasers Conference San Francisco, USA, June 5-8, 2006 p235

    [5]
    [6]

    Wang B Y 1982 J. Astronau. 3 81 (in Chinese) [王柏懿 1982 宇航学报 3 81]

    [7]
    [8]
    [9]

    Daniel G, Joseph S, Robert S 1992 Electromagnetic Wave Propagation in Unmagnetized Plasmas (Malibu, CA: Hughes Research Laboratories) p1

    [10]

    Heald C B, Wharton M A 1965 Plasma Diagnostics with Microwaves (1st Ed.) (New York: John Wiley Sons) p120

    [11]
    [12]

    Ma C G, Zhao Q, Luo X G, He G, Zheng L, Liu J W 2011 Acta Phys. Sin. 60 055201 (in Chinese) [马春光, 赵青, 罗先刚, 何果, 郑玲, 刘建卫 2011 物理学报 60 055201]

    [13]
    [14]

    Zheng L, Zhao Q, Luo X G, Ma P, Liu S Z, Huang C, Xing X J, Zhang C Y, Chen X L 2012 Acta Phys. Sin. 61 155203 (in Chinese) [郑灵, 赵青, 罗先刚, 马平,刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖 2012 物理学报 61 155203]

    [15]
    [16]

    Zheng L, Zhao Q, Liu S Z, Xing X J 2012 Acta Phys. Sin. 61 245202 (in Chinese) [郑灵, 赵青, 刘述章, 邢晓俊 2012 物理学报 61 245202]

    [17]
    [18]
    [19]

    Wu R H, Liu H Y, Liu J Q, Chang Q 2013 J. Beijing Univ. Aeronaut. Astronaut. 18 585 (in Chinese) [邬润辉, 刘洪艳, 刘佳琪, 常青 2013 北京航空航天大学学报 18 585]

    [20]

    Gillman E D, Foster J E, Blankson I M 2007 Review of Leading Approaches for Mitigating Hypersonic Vehicle Communications Blackout and a Method of Ceramic Particulate Injection Via Cathode Spot Arcs for Blackout Mitigation (Cleveland, Ohio: NASA) p8

    [21]
    [22]
    [23]

    Potter D L 2011 The 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference San Francisco, USA, April 11-14, 2011 p2153

    [24]
    [25]

    Anthony D, Richard G 1971 AIAA J. 8 1533

    [26]

    Lin T C, Sproul L K 2006 Comput. Fluids 35 703

    [27]
    [28]

    Shawn G O, Brian E G, Fergason S D 1999 IEEE Tran. Plasma Sci. 27 587

    [29]
    [30]

    Yang M, Li X P, Xie K, Liu Y M, Shi L 2013 J. Astronaut. 34 842 (in Chinese) [杨敏, 李小平, 谢楷, 刘彦明, 石磊 2013 宇航学报 34 842]

    [31]
    [32]
    [33]

    Yang M, Li X P, Xie K, Liu Y M, Liu D L 2013 Phys. Plasmas 20 1

    [34]

    Zhu B, Yang J, Huang X G, Mao G W, Liu J P 2006 Acta Phys. Sin. 55 2352 (in Chinese) [朱冰, 杨娟, 黄学刚, 毛根旺, 刘俊平 2006 物理学报 55 2352]

    [35]
    [36]
    [37]

    Wang L, Cao J X, Wang Y, Niu T Y, Wang K, Zhu Y 2007 Acta Phys. Sin. 56 1429 (in Chinese) [王亮, 曹金祥, 王艳, 牛田野, 王舸, 朱颖 2007 物理学报 56 1429]

  • [1] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究. 物理学报, 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [2] 焦蛟, 童继生, 马春光, 郭佶玙, 薄勇, 赵青. 电磁波在高密度等离子体微柱腔体结构中的新传输模式. 物理学报, 2018, 67(1): 015202. doi: 10.7498/aps.67.20171728
    [3] 薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫. 电磁波在非均匀磁化的等离子体鞘套中传输特性研究. 物理学报, 2016, 65(3): 035201. doi: 10.7498/aps.65.035201
    [4] 管娜娜. 胶子非弹性散射过程对夸克胶子等离子体中双轻子产生的影响. 物理学报, 2016, 65(14): 142501. doi: 10.7498/aps.65.142501
    [5] 薄勇, 赵青, 罗先刚, 范佳, 刘颖, 刘建卫. 电磁波在时变磁化等离子体信道中通信性能的实验研究. 物理学报, 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [6] 林敏, 徐浩军, 魏小龙, 梁华, 张艳华. 电磁波在非磁化等离子体中衰减效应的实验研究. 物理学报, 2015, 64(5): 055201. doi: 10.7498/aps.64.055201
    [7] 刘智惟, 包为民, 李小平, 刘东林. 一种考虑电磁波驱动效应的等离子碰撞频率分段计算方法. 物理学报, 2014, 63(23): 235201. doi: 10.7498/aps.63.235201
    [8] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析. 物理学报, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [9] 陈文波, 龚学余, 邓贤君, 冯军, 黄国玉. THz电磁波在时变非磁化等离子体中的传播特性研究. 物理学报, 2014, 63(19): 194101. doi: 10.7498/aps.63.194101
    [10] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究. 物理学报, 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [11] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹. 降低表面等离子激元寄生吸收损失的途径研究. 物理学报, 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [12] 郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖. 等离子体中电磁波传输特性理论与实验研究. 物理学报, 2012, 61(15): 155203. doi: 10.7498/aps.61.155203
    [13] 杨超, 刘大刚, 王学琼, 王小敏, 夏蒙重, 彭凯. 氢原子传输及负氢离子产生全三维数值模拟研究. 物理学报, 2012, 61(10): 105204. doi: 10.7498/aps.61.105204
    [14] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟. 物理学报, 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [15] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应. 物理学报, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [16] 张秋菊, 盛政明, 苍 宇, 张 杰. 激光脉冲诱导的等离子体密度调制及其产生的相位反射. 物理学报, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [17] 李建芬, 李 农, 林 辉. 适合传输快变信息信号的混沌调制保密通信. 物理学报, 2004, 53(6): 1694-1698. doi: 10.7498/aps.53.1694
    [18] 盛政明, 张 杰, 余 玮. 强激光与等离子体相互作用中低频电磁场孤子波的产生及其捕获. 物理学报, 2003, 52(1): 125-134. doi: 10.7498/aps.52.125
    [19] 江志明, 徐至展, 张伟清, 林礼煌, 陈时胜. 激光产生等离子体中密度轮廓的变陡和凹陷现象的研究. 物理学报, 1988, 37(12): 2048-2052. doi: 10.7498/aps.37.2048
    [20] 王德焴. 自由界面等离子体平衡的变分原理. 物理学报, 1980, 29(2): 233-240. doi: 10.7498/aps.29.233
计量
  • 文章访问数:  2671
  • PDF下载量:  741
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-22
  • 修回日期:  2013-12-16
  • 刊出日期:  2014-04-05

信号在时变等离子体中的传播特性

  • 1. 西安电子科技大学空间科学与技术学院, 西安 710071
    基金项目: 国家重点基础研究发展计划(批准号:2014CB340205)、国家自然科学基金青年科学基金(批准号:61301173)和中央高校基本科研业务费(批准号:K72125087)资助的课题.

摘要: 高速飞行器等离子鞘套由于飞行姿态调整、湍流、非均匀烧蚀等因素的影响,使其等离子体参数存在时变特性. 针对这种传输介质的快速时变特性引起的电波幅度、相位上的寄生调制效应,本文利用大面积辉光放电等离子体产生装置,搭建了等离子体中信号传输实验系统,进行了S频段的单频信号与调制信号传输实验,观测验证了调制效应的存在,且其调制频率与等离子体变化频率具有一致性,进一步分析了等离子参数与寄生调制效应的关系. 理论和实验结果表明:即使当载波频率大于等离子频率时,时变等离子引起的寄生调制效应也会使传输信号的星座图发生旋转,造成其判决容差裕度变小,通信可靠性下降,并且载波频率越接近等离子频率时,其寄生调制效应越强烈.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回