搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁波在时变磁化等离子体信道中通信性能的实验研究

薄勇 赵青 罗先刚 范佳 刘颖 刘建卫

引用本文:
Citation:

电磁波在时变磁化等离子体信道中通信性能的实验研究

薄勇, 赵青, 罗先刚, 范佳, 刘颖, 刘建卫

Experimental study of the communication performance of electromagnetic wave in time-varying and magnetized plasma channel

Bo Yong, Zhao Qing, Luo Xian-Gang, Fan Jia, Liu Ying, Liu Jian-Wei
PDF
导出引用
  • 本文首先利用5.8 GHz微波实际测量了辉光放电等离子体源电子密度和碰撞频率随时间的变化规律. 然后搭建实验平台, 测试了多种通信调制体制的信号经过该等离子体源后的误码率, 实验发现BPSK调制方式的信号在该时间变化的等离子体信道中通信误码率最小. 最后加入磁场, 实验测试了L波段(1.5 GHz) BPSK调制信号和S波段(2.5 GHz) QPSK信号在该磁化等离子体中的衰减、相移以及眼图和星座图的变化, 通过与非磁化情况下对比发现, 加入磁场后, 信道的通信性能有所改善, 误码率显著降低, 可以有效地缓解时变等离子体引起的幅度和相位上的寄生调制效应.
    In this paper the influences of the time-varying plasma and magnetized time-varying plasma on the communication performance are investigated. Using a 5.8 GHz microwave source, the electron density and collision frequency of the time-varying glow discharge plasma are measured. An experimental platform is set up to test the bit error rates (BERs) of a variety of the modulation signals after going though the time-varying plasma channel. The experimental results show that the binary phase shift keying (BPSK) modulation signal has a minimal communication BER. Meanwhile, the variations of L-band BPSK and S-band QPSK (quadrature phase shift keying) signal's eye diagram and the constellation diagram, and the variation of energy after a magnetized plasma are observed. Compared with the un-magnetized situation, the magnetized plasma communication performance is greatly improved and the BER becomes much lower. The results prove that the magnetic field can effectively relieve the amplitude modulation and phase modulation caused by the plasma channel.
      通信作者: 薄勇, boyong_boyong@163.com;zhaoq@uestc.edu.cn ; 赵青, boyong_boyong@163.com;zhaoq@uestc.edu.cn
    • 基金项目: 国家高技术研究发展计划(批准号: 2011AA7022016)、国家自然科学基金(批准号: 11275045)和四川省科技支撑计划(批准号: 2013GZ01333)资助的课题.
      Corresponding author: Bo Yong, boyong_boyong@163.com;zhaoq@uestc.edu.cn ; Zhao Qing, boyong_boyong@163.com;zhaoq@uestc.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA7022016), the National Natural Science Foundation of China (Grant No. 11275045), and the Scientific Research Foundation of the Education Department of Sichuan Province, China (Grant No. 2013GZ01333).
    [1]

    Petrin A B 2000 IEEE Trans. Plasma Sci. 28 3

    [2]

    Korotkevich A O, Newell A C, Zakharov V E 2007 J. Appl. Phys. 102 083305

    [3]

    Kim M, Keidar M 2010 Journal of Spacecraft and Rockets 47 1

    [4]

    Kundrapu M, . Loverich J, Beckwith K, Stoltz P 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) Washington, DC, May 25-29, 2014 p1

    [5]

    Kundrapu M, Loverich J, Beckwith K, Stoltz P 2015 Journal of Spacecraft and Rockets 52 853

    [6]

    Yang M, Li X P, Xie K 2013 Journal of Astronautics 34 6 (in Chinese) [杨敏, 李小平, 谢楷 2013 宇航学报 34 6]

    [7]

    Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201 (in Chinese) [杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 物理学报 63 085201]

    [8]

    Lin T C, Sproul L K 2006 Comput. Fluids 35 703

    [9]

    Shawn G O, Brlan E G, Fergason S D 1999 IEEE Trans. Plasma Sci. 27 587

    [10]

    Wu R H, Liu H Y, Liu J Q, Chang Q 2013 Beijing Univ. Aeronaut. 18 585 (in Chinese) [邬润辉, 刘洪艳, 刘佳琪, 常青 2013 北京航空航天大学学报 18 585]

    [11]

    Roth J R 1995 Industrial Plasma Engineering (Philadelphia: Inst, Phys. Publishing) pp15-20

    [12]

    Howlader M K, Yang Y Q, Roth J R 2005 IEEE Trans. Plasma Sci. 33 1093

    [13]

    Zheng L 2013 Ph.D.Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [郑灵 2013 博士学位论文 (成都: 电子科技大学)]

    [14]

    Zheng L, Zhao Q, Luo X G, Ma P 2012 Acta Phys. Sin. 61 155203 (in Chinese) [郑灵, 赵青, 罗先刚, 马平 2012 物理学报 61 155203]

    [15]

    Zheng L, Zhao Q, Liu S Z, Xing X J 2012 Acta Phys. Sin. 61 245202 (in Chinese) [郑灵, 赵青, 刘述章, 邢晓俊 2012 物理学报 61 245202]

    [16]

    Fan C X, Cao L N 2013 Principle of Communication (Beijing: National Defense Industry Press) p216 (in Chinese) [樊昌信, 曹丽娜 2013 通信原理 (北京:国防工业出版社) 第216页]

  • [1]

    Petrin A B 2000 IEEE Trans. Plasma Sci. 28 3

    [2]

    Korotkevich A O, Newell A C, Zakharov V E 2007 J. Appl. Phys. 102 083305

    [3]

    Kim M, Keidar M 2010 Journal of Spacecraft and Rockets 47 1

    [4]

    Kundrapu M, . Loverich J, Beckwith K, Stoltz P 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) Washington, DC, May 25-29, 2014 p1

    [5]

    Kundrapu M, Loverich J, Beckwith K, Stoltz P 2015 Journal of Spacecraft and Rockets 52 853

    [6]

    Yang M, Li X P, Xie K 2013 Journal of Astronautics 34 6 (in Chinese) [杨敏, 李小平, 谢楷 2013 宇航学报 34 6]

    [7]

    Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201 (in Chinese) [杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 物理学报 63 085201]

    [8]

    Lin T C, Sproul L K 2006 Comput. Fluids 35 703

    [9]

    Shawn G O, Brlan E G, Fergason S D 1999 IEEE Trans. Plasma Sci. 27 587

    [10]

    Wu R H, Liu H Y, Liu J Q, Chang Q 2013 Beijing Univ. Aeronaut. 18 585 (in Chinese) [邬润辉, 刘洪艳, 刘佳琪, 常青 2013 北京航空航天大学学报 18 585]

    [11]

    Roth J R 1995 Industrial Plasma Engineering (Philadelphia: Inst, Phys. Publishing) pp15-20

    [12]

    Howlader M K, Yang Y Q, Roth J R 2005 IEEE Trans. Plasma Sci. 33 1093

    [13]

    Zheng L 2013 Ph.D.Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [郑灵 2013 博士学位论文 (成都: 电子科技大学)]

    [14]

    Zheng L, Zhao Q, Luo X G, Ma P 2012 Acta Phys. Sin. 61 155203 (in Chinese) [郑灵, 赵青, 罗先刚, 马平 2012 物理学报 61 155203]

    [15]

    Zheng L, Zhao Q, Liu S Z, Xing X J 2012 Acta Phys. Sin. 61 245202 (in Chinese) [郑灵, 赵青, 刘述章, 邢晓俊 2012 物理学报 61 245202]

    [16]

    Fan C X, Cao L N 2013 Principle of Communication (Beijing: National Defense Industry Press) p216 (in Chinese) [樊昌信, 曹丽娜 2013 通信原理 (北京:国防工业出版社) 第216页]

计量
  • 文章访问数:  1980
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-20
  • 修回日期:  2015-12-11
  • 刊出日期:  2016-03-05

电磁波在时变磁化等离子体信道中通信性能的实验研究

    基金项目: 

    国家高技术研究发展计划(批准号: 2011AA7022016)、国家自然科学基金(批准号: 11275045)和四川省科技支撑计划(批准号: 2013GZ01333)资助的课题.

摘要: 本文首先利用5.8 GHz微波实际测量了辉光放电等离子体源电子密度和碰撞频率随时间的变化规律. 然后搭建实验平台, 测试了多种通信调制体制的信号经过该等离子体源后的误码率, 实验发现BPSK调制方式的信号在该时间变化的等离子体信道中通信误码率最小. 最后加入磁场, 实验测试了L波段(1.5 GHz) BPSK调制信号和S波段(2.5 GHz) QPSK信号在该磁化等离子体中的衰减、相移以及眼图和星座图的变化, 通过与非磁化情况下对比发现, 加入磁场后, 信道的通信性能有所改善, 误码率显著降低, 可以有效地缓解时变等离子体引起的幅度和相位上的寄生调制效应.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回