搜索

x
中国物理学会期刊

螺旋波等离子体制备多种碳基薄膜原位诊断研究

CSTR: 32037.14.aps.70.20201809

In-situ diagnosis of Ar/CH4 helicon wave plasma for synthesis of carbon nanomaterials

CSTR: 32037.14.aps.70.20201809
PDF
HTML
导出引用
  • 利用自行研制的强磁场螺旋波等离子体化学气相沉积装置(HWP-CVD), 通过改变等离子放电参数, 实现多种碳基薄膜制备. 利用朗缪尔探针、发射光谱以及质谱对Ar/CH4等离子体放电进行原位诊断; 用扫描电子显微镜和拉曼光谱对碳基薄膜进行表征. 结果表明: 在给定参数下, 等离子体放电模式均为螺旋波放电模式; 在给定CH4流量下, 等离子体中电子能量分布均足以使甲烷分子离解, 并形成含碳活性自由基. 通过CH4流量调整, 实现了不同碳基薄膜的制备. 研究表明: 当等离子体中富含CH和H自由基时, 适合类金刚石薄膜生长; 当等离子体中富含C2自由基和少H时, 适合垂直石墨烯纳米片生长. 根据等离子体诊断和薄膜表征结果, 提出了Ar螺旋波等离子体作用下甲烷分子的裂解机理, 建立了碳基薄膜的生长模型; 验证了Ar/CH4–HWP在碳基纳米薄膜制备中的可行性, 为HWP-CVD技术制备碳基纳米薄膜提供借鉴.

     

    A variety of carbon-based thin films are prepared by self-developed helicon wave plasma chemical vapor deposition (HMHX, HWP-CVD) through changing the parameters of plasma discharge. The Ar/CH4 plasma discharge is diagnosed in situ by Langmuir probe, emission spectroscopy and mass spectrometry. The carbon thin films are characterized by scanning electron microscopy (SEM) and Raman spectroscopy (Raman). The results show that under the given parameters, the plasma discharge modes are all helicon wave discharge modes. Under a given CH4 flow rate, the energy distribution in the plasma is enough to dissociate the methane molecules and form carbon free radicals. The preparation of different carbon-based films is realized by adjusting the CH4 fluence. The research result shows that when the plasma is rich in CH and H radicals, it is suitable for growing diamond-like carbon films. When the plasma is rich in C2 radicals and less H, it is favorable for growing vertical graphene nanosheets. According to the results of plasma diagnosis and material characterization, the decomposition mechanism of methane molecules under the action of Ar helicon wave plasma (HWP) is proposed, and the growth model of carbon-based materials is established, the feasibility of Ar/CH4-HWP in the preparation of carbon-based nanomaterials is verified, which provides a reference for preparing the carbon-based materials by HWP-CVD technology.

     

    目录

    /

    返回文章
    返回