搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用

谢会乔 谭熠 刘阳青 王文浩 高喆

引用本文:
Citation:

中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用

谢会乔, 谭熠, 刘阳青, 王文浩, 高喆

A collisional-radiative model for the helium plasma in the sino-united spherical tokamak and its application to the line intensity ratio diagnostic

Xie Hui-Qiao, Tan Yi, Liu Yang-Qing, Wang Wen-Hao, Gao Zhe
PDF
导出引用
  • 介绍了针对中国联合球形托卡马克氦放电等离子体建立的碰撞辐射(CR)模型. 给出CR模型计算的来自主量子数n=4激发态能级的三条谱线的强度比447.1 nm(23P–43S)/492.2 nm(21P–41D)和492.2 nm/504.8 nm(21P–41S)在电子温度Te和电子密度Ne空间内的计算结果. 建立了根据谱线强度比确定Te与Ne的谱线比法. 将该方法应用在氦放电等离子体诊断上,通过与微波干涉仪测量结果的对比以及CR模型与实验测量的激发态数密度的对比验证了方法的有效性. 分析了引起诊断结果误差的因素,包括实验测量设备误差、CR模型使用的速率系数不确定度与能级选取,以及光谱测量的弦积分特性等.
    The collisional-radiative model, that has been constructed for the helium plasma in the Sino-United Spherical Tokamak is introduced. The result of the 447.1nm (23P-43S)/492.2nm(21P-41D) and 492.2nm/504.8nm(21P-41S) line ratios is given. The line ratio method that is used for measuring electron temperature Te and density Ne parameters is described. The result from the line ratio method is consistent with the measurement of the 94 GHz interferometer. The method is also validated by comparing the relative population densities of the excited states which are deduced from the CR model and the measured intensity data of helium lines. The factors that brings errors into the diagnostic result are discussed, including the error from the measurements, and those from the uncertainties of the rate coefficients that are used in the CR model and the viewing chord integration characteristic of the optical emission measurement.
    • 基金项目: 国家自然科学基金(批准号:10990214,11175103,11261140327,11075092,11005067)和国际热核聚变实验堆(ITER)计划(批准号:2013GB112001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10990214, 11175103, 11261140327, 11075092, 11005067) and the National Magnetic Confinement Fusion Science Program, China (Grant No. 2013GB112001).
    [1]

    Boivin R F, Kline J L, Scime E E 2001 Phys. Plasmas 8 5303

    [2]

    Niu T Y, Cao J X, Liu L, Liu J Y, Wang Y, Wang L, L Y, Wang K, Zhu Y 2007 Acta Phys. Sin. 56 2330 (in Chinese) [牛田野, 曹金祥, 刘磊, 刘金英, 王艳, 王亮, 吕铀, 王珂, 朱颖 2007 物理学报 56 2330]

    [3]

    Yu Y Q, Xin Y, Ning Z Y 2011 Chin. Phys. B 20 015207

    [4]

    Zhong W L, Duan X R, Yu D L, Han X Y, Yang L M 2010 Acta Phys. Sin. 59 3336 (in Chinese) [钟武律, 段旭如, 余德良, 韩晓玉, 杨立梅 2010 物理学报 59 3336]

    [5]

    Pu Y D, Zhang J Y, Yang J M, Huang T X, Ding Y K 2011 Chin. Phys. B 20 015202

    [6]

    O'Mullane M G, Anderson H, Andrew Y, Brix M, Giroud C, Meigs A G, Proschek M, Summers H P, Zastrow K D, contributors to the FEDA-JET workprogramme 2002 Advanced Diagnostics for Magnetic and Inertial Fusion (Varenna: Springer) p67

    [7]

    Goto M 2003 J. Quant. Spectrosc. Radiat. Transfer 76 331

    [8]

    Schweer B, Mank G, Pospieszczyk A, Brosda B, Pohlmeyer B 1992 J. Nucl. Mater. 196-198 174

    [9]

    Schmitz O, Beigman I L, Vainshtein L A, Schweer B, Kantor M, Pospieszczyk A, Xu Y, Krychowiak M, Lehnen M, Samm U, Unterberg B, the TEXTOR team 2008 Plasma Phys. Control. Fusion 50 115004

    [10]

    Field A R, Carolan P G, Conway N J, O'Mullane M G 1999 Rev. Sci. Instrum. 70 355

    [11]

    Hidalgo A, Tafalla D, Brañas B, Tabarés F L 2004 Rev. Sci. Instrum. 75 3478

    [12]

    Ahn J W, Craig D, Fiksel G, Den Hartog D J, Anderson J K, O'Mullane M G 2007 Phys. Plasmas 14 083301

    [13]

    Fujimoto T 1979 J. Quant. Spectrosc. Radiat. Transfer 21 439

    [14]

    Li J, Xie W P, Huang X B, Yang L B, Cai H C, Pu Y K 2010 Acta Phys. Sin. 59 7922 (in Chinese) [李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康 2010 物理学报 59 7922]

    [15]

    Tang J W, Huang D Z, Yi Y B 2010 Acta Phys. Sin. 59 7769 (in Chinese) [唐京武, 黄笃之, 易有报 2010 物理学报 59 7769]

    [16]

    He Y X 2002 Plasma Sci. Technol. 4 1355

    [17]

    Wang W H, He Y X, Gao Z, Zeng L, Zhang G P, Xie L F, Yang X Z, Feng C H, Wang L, Xiao Q, Li X Y 2005 Plasma Phys. Control. Fusion 47 1

    [18]

    Ralchenko Y, Janev R K, Kato T, Fursa D V, Bray I, de Heer F J 2008 At. Data Nucl. Data Tables 94 603

    [19]

    Verner D A, Ferland G J 1996 arXiv:astro-ph/9509083 [astro-ph]

    [20]

    Aldrovandi S M V, Péquignot D 1973 Astron. Astrophys. 25 137

    [21]

    Shull J M, Van Steenberg M 1982 Ap. J. Suppl. Ser. 48 95

    [22]

    Arnaud M, Rothenflug R 1985 Astron. Astrophys. Suppl. Ser. 60 425

    [23]

    Summers H P, Dickson W J, O'Mullane M G, Badnell N R, Whiteford A D, Brooks D H, Lang J, Loch S D, Griffin D C 2006 Plasma Phys. Control. Fusion 48 263

    [24]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energy Denisty Phys. 1 3

    [25]

    Boivin R F, Loch S D, Ballance C P, Branscomb D, Pindzola M S 2007 Plasma Sources Sci. Technol. 16 470

    [26]

    Burgos J M M, Schmitz O, Loch S D, Ballance C P 2012 Phys. Plasmas 19 012501

    [27]

    Fujimoto T, Sawada K, Takahata K, Eriguchi K, Suemitsu H, Ishii K, Okasaka R, Tanaka H, Maekawa T, Terumichi Y, Tanaka S 1989 Nucl. Fusion 29 1519

  • [1]

    Boivin R F, Kline J L, Scime E E 2001 Phys. Plasmas 8 5303

    [2]

    Niu T Y, Cao J X, Liu L, Liu J Y, Wang Y, Wang L, L Y, Wang K, Zhu Y 2007 Acta Phys. Sin. 56 2330 (in Chinese) [牛田野, 曹金祥, 刘磊, 刘金英, 王艳, 王亮, 吕铀, 王珂, 朱颖 2007 物理学报 56 2330]

    [3]

    Yu Y Q, Xin Y, Ning Z Y 2011 Chin. Phys. B 20 015207

    [4]

    Zhong W L, Duan X R, Yu D L, Han X Y, Yang L M 2010 Acta Phys. Sin. 59 3336 (in Chinese) [钟武律, 段旭如, 余德良, 韩晓玉, 杨立梅 2010 物理学报 59 3336]

    [5]

    Pu Y D, Zhang J Y, Yang J M, Huang T X, Ding Y K 2011 Chin. Phys. B 20 015202

    [6]

    O'Mullane M G, Anderson H, Andrew Y, Brix M, Giroud C, Meigs A G, Proschek M, Summers H P, Zastrow K D, contributors to the FEDA-JET workprogramme 2002 Advanced Diagnostics for Magnetic and Inertial Fusion (Varenna: Springer) p67

    [7]

    Goto M 2003 J. Quant. Spectrosc. Radiat. Transfer 76 331

    [8]

    Schweer B, Mank G, Pospieszczyk A, Brosda B, Pohlmeyer B 1992 J. Nucl. Mater. 196-198 174

    [9]

    Schmitz O, Beigman I L, Vainshtein L A, Schweer B, Kantor M, Pospieszczyk A, Xu Y, Krychowiak M, Lehnen M, Samm U, Unterberg B, the TEXTOR team 2008 Plasma Phys. Control. Fusion 50 115004

    [10]

    Field A R, Carolan P G, Conway N J, O'Mullane M G 1999 Rev. Sci. Instrum. 70 355

    [11]

    Hidalgo A, Tafalla D, Brañas B, Tabarés F L 2004 Rev. Sci. Instrum. 75 3478

    [12]

    Ahn J W, Craig D, Fiksel G, Den Hartog D J, Anderson J K, O'Mullane M G 2007 Phys. Plasmas 14 083301

    [13]

    Fujimoto T 1979 J. Quant. Spectrosc. Radiat. Transfer 21 439

    [14]

    Li J, Xie W P, Huang X B, Yang L B, Cai H C, Pu Y K 2010 Acta Phys. Sin. 59 7922 (in Chinese) [李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康 2010 物理学报 59 7922]

    [15]

    Tang J W, Huang D Z, Yi Y B 2010 Acta Phys. Sin. 59 7769 (in Chinese) [唐京武, 黄笃之, 易有报 2010 物理学报 59 7769]

    [16]

    He Y X 2002 Plasma Sci. Technol. 4 1355

    [17]

    Wang W H, He Y X, Gao Z, Zeng L, Zhang G P, Xie L F, Yang X Z, Feng C H, Wang L, Xiao Q, Li X Y 2005 Plasma Phys. Control. Fusion 47 1

    [18]

    Ralchenko Y, Janev R K, Kato T, Fursa D V, Bray I, de Heer F J 2008 At. Data Nucl. Data Tables 94 603

    [19]

    Verner D A, Ferland G J 1996 arXiv:astro-ph/9509083 [astro-ph]

    [20]

    Aldrovandi S M V, Péquignot D 1973 Astron. Astrophys. 25 137

    [21]

    Shull J M, Van Steenberg M 1982 Ap. J. Suppl. Ser. 48 95

    [22]

    Arnaud M, Rothenflug R 1985 Astron. Astrophys. Suppl. Ser. 60 425

    [23]

    Summers H P, Dickson W J, O'Mullane M G, Badnell N R, Whiteford A D, Brooks D H, Lang J, Loch S D, Griffin D C 2006 Plasma Phys. Control. Fusion 48 263

    [24]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energy Denisty Phys. 1 3

    [25]

    Boivin R F, Loch S D, Ballance C P, Branscomb D, Pindzola M S 2007 Plasma Sources Sci. Technol. 16 470

    [26]

    Burgos J M M, Schmitz O, Loch S D, Ballance C P 2012 Phys. Plasmas 19 012501

    [27]

    Fujimoto T, Sawada K, Takahata K, Eriguchi K, Suemitsu H, Ishii K, Okasaka R, Tanaka H, Maekawa T, Terumichi Y, Tanaka S 1989 Nucl. Fusion 29 1519

  • [1] 王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜. 基于前馈神经网络的等离子体光谱诊断方法. 物理学报, 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [2] 吴坚, 李兴文, 李沫, 杨泽锋, 史宗谦, 贾申利, 邱爱慈. AlK壳层等离子体辐射谱模型的比对. 物理学报, 2015, 64(20): 205201. doi: 10.7498/aps.64.205201
    [3] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [4] 宁凯杰, 张庆礼, 周鹏宇, 杨华军, 许兰, 孙敦陆, 殷绍唐. Yb3+:Gd2SiO5晶体的结构和光谱性能. 物理学报, 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [5] 翟晓东, 丁艳军, 彭志敏, 罗锐. N2第二正带系发射光谱的理论计算及实验研究. 物理学报, 2012, 61(12): 123301. doi: 10.7498/aps.61.123301
    [6] 王琪, 樊群超, 孙卫国, 冯灏. 精确研究NbN分子d1+b1+电子态跃迁的P线系发射光谱. 物理学报, 2012, 61(4): 043301. doi: 10.7498/aps.61.043301
    [7] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [8] 樊群超, 孙卫国, 李会东, 冯灏. CO电子基态P线系跃迁谱线的理论研究. 物理学报, 2011, 60(6): 063301. doi: 10.7498/aps.60.063301
    [9] 彭志敏, 丁艳军, 杨乾锁, 姜宗林. 基于OH自由基A2Σ + →X2Πr 电子带系发射光谱的温度测量技术. 物理学报, 2011, 60(5): 053302. doi: 10.7498/aps.60.053302
    [10] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [11] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [12] 于新明, 程书博, 易有根, 张继彦, 蒲昱东, 赵阳, 胡峰, 杨家敏, 郑志坚. Al等离子体类锂伴线的布居机制分析及实验应用. 物理学报, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [13] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究. 物理学报, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [14] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究. 物理学报, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [15] 丁 君, 杨秋红, 唐在峰, 徐 军, 苏良碧. Er3+/Yb3+共掺的氧化镧钇透明陶瓷的光谱性能研究. 物理学报, 2007, 56(4): 2207-2211. doi: 10.7498/aps.56.2207
    [16] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [17] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [18] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [19] 谭 浩, 宋 峰, 苏 静, 商美茹, 付 博, 张光寅, 程振祥, 陈焕矗. Er3+,Tm3+共掺的NaY(WO4)2晶体的光谱分析和上转换发光. 物理学报, 2004, 53(2): 631-635. doi: 10.7498/aps.53.631
    [20] 宋峰, 谭浩, 商美茹, 张光寅, 程振祥, 陈焕矗. 掺Er3+的NaY(WO4)2晶体的光谱特性. 物理学报, 2002, 51(10): 2375-2379. doi: 10.7498/aps.51.2375
计量
  • 文章访问数:  3383
  • PDF下载量:  477
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-12
  • 修回日期:  2014-01-28
  • 刊出日期:  2014-06-05

中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用

  • 1. 清华大学工程物理系, 北京 100084
    基金项目: 国家自然科学基金(批准号:10990214,11175103,11261140327,11075092,11005067)和国际热核聚变实验堆(ITER)计划(批准号:2013GB112001)资助的课题.

摘要: 介绍了针对中国联合球形托卡马克氦放电等离子体建立的碰撞辐射(CR)模型. 给出CR模型计算的来自主量子数n=4激发态能级的三条谱线的强度比447.1 nm(23P–43S)/492.2 nm(21P–41D)和492.2 nm/504.8 nm(21P–41S)在电子温度Te和电子密度Ne空间内的计算结果. 建立了根据谱线强度比确定Te与Ne的谱线比法. 将该方法应用在氦放电等离子体诊断上,通过与微波干涉仪测量结果的对比以及CR模型与实验测量的激发态数密度的对比验证了方法的有效性. 分析了引起诊断结果误差的因素,包括实验测量设备误差、CR模型使用的速率系数不确定度与能级选取,以及光谱测量的弦积分特性等.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回