搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究

何民卿 董全力 盛政明 张杰

引用本文:
Citation:

激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究

何民卿, 董全力, 盛政明, 张杰

Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field

He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie
PDF
导出引用
  • 冲击波是天体物理观测中常见的现象, 其对粒子的加速被认为是高能宇宙射线的来源. 宇宙中冲击波周围往往存在很强的磁场, 但人们对于此类强磁场的产生放大过程的理解并不充分. 本文利用二维粒子模拟程序研究了激光与磁化或者非磁化等离子体相互作用产生的冲击波现象, 给出了冲击波波前处磁场的产生放大特性. 研究发现, 作用过程中的自生磁场可以储存能量, 从而进一步加速电子; 当存在外加磁场时, 由冲击波加速的电子和离子的能量都比同条件下非磁化等离子体的能量高; 而且外加磁场藉由冲击波放大倍数则与其值有极大关系. 与天文观测中推断的磁场与背景磁场相比放大千倍这一研究结果的比较可以看出, 天体冲击波周围磁场放大主要是由局域内生磁场导致的.
    Shock wave is a common phenomenon in astrophysics. Shock wave acceleration has been regarded as a source of high-energy cosmic rays. Very strong magnetic field exists in the surrounding of the shock wave at the edge of the supernova remnants. But the mechanisms of generation and amplification of such a strong magnetic field are not clear yet. In this paper, the properties of shock wave driven by the laser irradiating on un-magnetized and magnetized plasmas are investigated using two-dimensional particle-in-cell (PIC) simulations. It is found that very strong spontaneous magnetic field can be generated around the laser-driven shock front in the un-magnetized plasma. The spontaneous magnetic field can store energy and accelerate electrons further. When an external magnetic field is introduced, the electrons and ions are accelerated more efficiently by the shock wave than in the un-magnetized plasma. The external magnetic field can transfer its energy to electrons and ions, and strengthen the shock wave. In simulations, the introduced external magnetic field has three different strengths: 1072 MG, 107.2 MG and 10.72 MG, which determine the shock structures through the driven currents. There are two single-polar magnetic arcs that constitute the shock structure when the external magnetic field is 1072 MG, i.e., one is the shock itself and the other is actually the reverse shock, whereas only one magnetic arc is produced but with a bipolar structure in the direction perpendicular to the shock propagation when the externally added magnetic fields are much lower (107.2 MG and 10.72 MG). The two bipolar magnetic structures will evolve into a single-polar arc when the externally added magnetic field is 107.2 MG, but they are kept for all the time when the external magnetic field is 10.72 MG. It can be explained by taking the Larmor radius into the consideration. That the amplification ratio of the magnetic field decreases as the introduced external magnetic field increases implies that the magnetic amplification in the space is possibly due to the local field generation rather than the field compression. An amplification ratio of tens of the external magnetic field is achieved due to the pseudo Rayleigh-Taylor instability, but still much smaller than that around the astrophysical shock front, indicating that other efficient mechanisms are responsible for the observed magnetic amplification around shocks in the supernova remnants.
    • 基金项目: 国家自然科学基金(批准号: 11305013, 11274152)、国家重点基础研究发展计划(批准号: 2013CBA01500)和国家高技术研究发展计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305013, 11274152), the National Basic Research Program of China (Grant No. 2013CBA01500), and the National High Techology and Development Program of China.
    [1]

    Yuan D W, Li Y T 2015 Chin. Phys. B 24 015204

    [2]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernández J C 2001 Nature 439 441

    [3]

    Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T 2001 Nature 439 445

    [4]

    Forslund D W, Shonk C R 1970 Phys. Rev. Lett. 25 1699

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [7]

    Keshet U, Waxman E 2005 Phys. Rev. Lett. 94 111102

    [8]

    Lee R E, Chapman S C, Dendy R O 2005 Phys. Plasma 12 012901

    [9]

    Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borghesi M, Romagnani L, Zepf M, Norimatsu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414

    [10]

    Honzawa T 1973 Plasma Physics 15 467

    [11]

    Devaux D, Fabbro R, Tollier L, Bartnicki E 1993 J. Appl. Phys. 74 2268

    [12]

    Humières E, Lefebvre E, Gremillet L, Malka V 2005 Phys. Plasma 12 062704

    [13]

    Sato M, Ohsawa Y 2006 Phys. Plasma 13 063110

    [14]

    Ucer D, Shapiro V D 2001 Phys. Rev. Lett. 87 075001

    [15]

    Sagdeev R Z 1966 Rev. Plasma Phys. 4 23

    [16]

    Ness N F, Searce C S, Seek J B 1964 J. Geophys. Res. 69 3531

    [17]

    Bell A R 1978 Mon. Not. R. Astron. Soc. 182 147

    [18]

    Blandford R D, Ostriker J P 1978 Astrophys. J. Lett. 221 L29

    [19]

    Axford W I, Leer E, McKenzie J F 1982 Astron. Astrophys. 111 317

    [20]

    Lee M A, Fisk L A 1982 Space Sci. Rev. 32 205

    [21]

    Koyama K, Petre R, Gotthelf E V, Hwang U, Matsuura M, Ozaki M, Holt S S 1995 Nature 378 255

    [22]

    Vink J, Laming J M 2003 Appl. Phys. J. 584 758

    [23]

    Volk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

    [24]

    Drake R P 2000 Phys. Plasmas 7 4690

    [25]

    Pfeffermann E, Aschenbach B 1996 in Zimmermann H U, Truemper J E, Yorke H ed.: Röntgenstrahlung from the Universe (Report 263 MPE, Garching) 267-268

    [26]

    Hinton J A 2004 Astron. Rev. 48 331

    [27]

    Hofmann W 2003 Proc. 28th ICRC Tsukuba (Tokyo:Univ. Academy Press) p2811

    [28]

    Uchiyama Y, Aharonian F A, Tanaka T, Takahashi T, Maeda Y 2007 Nature 449 576U

    [29]

    Xu H 2002 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [徐涵 2002 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [30]

    Ma Y Y 2004 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [马燕云 2004 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [31]

    Shao F Q 2002 Particle Simulations in Plasma (Beijing: Science Press) (in Chinese) [邵福球 2002 等离子体粒子模拟(北京: 科学出版社)]

    [32]

    Zheng J 2006 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [郑君 2006 博士学位论文 (北京: 中国科学院物理研究所)]

    [33]

    Chen M 2007 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [陈民 2007 博士学位论文 (北京: 中国科学院物理研究所)]

    [34]

    He M Q 2008 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [何民卿 2008 博士学位论文 (北京: 中国科学院物理研究所)]

    [35]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [36]

    Mason R J, Tabak M 1998 Phys. Rev. Lett. 80 524

    [37]

    Lasinski B F, Langdon A B, Hatchett S P, Key M H, Tabak M 1999 Phys. Plasmas 6 2041

    [38]

    Kingham R J, Bell A R 2002 Phys. Rev. Lett. 84 045004

    [39]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363 (in Chinese) [何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363]

    [40]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(R)

    [41]

    Chen M, Sheng Z M, Dong Q L, He M Q, Li Y T, Muhammad A B, Zhang J 2007 Phys. Plasmas 14 053120

    [42]

    Chen M, Sheng Z M, Dong Q L, He M Q, Weng S M, Li Y T, Zhang J 2007 Phys. Plasmas 14 113106

    [43]

    Denavit J 1992 Phys. Rev. Lett. 69 3052

    [44]

    Nakamura T, Kawata S 2003 Phys. Rev. E 67 026403

    [45]

    Völk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

  • [1]

    Yuan D W, Li Y T 2015 Chin. Phys. B 24 015204

    [2]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernández J C 2001 Nature 439 441

    [3]

    Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T 2001 Nature 439 445

    [4]

    Forslund D W, Shonk C R 1970 Phys. Rev. Lett. 25 1699

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [7]

    Keshet U, Waxman E 2005 Phys. Rev. Lett. 94 111102

    [8]

    Lee R E, Chapman S C, Dendy R O 2005 Phys. Plasma 12 012901

    [9]

    Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borghesi M, Romagnani L, Zepf M, Norimatsu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414

    [10]

    Honzawa T 1973 Plasma Physics 15 467

    [11]

    Devaux D, Fabbro R, Tollier L, Bartnicki E 1993 J. Appl. Phys. 74 2268

    [12]

    Humières E, Lefebvre E, Gremillet L, Malka V 2005 Phys. Plasma 12 062704

    [13]

    Sato M, Ohsawa Y 2006 Phys. Plasma 13 063110

    [14]

    Ucer D, Shapiro V D 2001 Phys. Rev. Lett. 87 075001

    [15]

    Sagdeev R Z 1966 Rev. Plasma Phys. 4 23

    [16]

    Ness N F, Searce C S, Seek J B 1964 J. Geophys. Res. 69 3531

    [17]

    Bell A R 1978 Mon. Not. R. Astron. Soc. 182 147

    [18]

    Blandford R D, Ostriker J P 1978 Astrophys. J. Lett. 221 L29

    [19]

    Axford W I, Leer E, McKenzie J F 1982 Astron. Astrophys. 111 317

    [20]

    Lee M A, Fisk L A 1982 Space Sci. Rev. 32 205

    [21]

    Koyama K, Petre R, Gotthelf E V, Hwang U, Matsuura M, Ozaki M, Holt S S 1995 Nature 378 255

    [22]

    Vink J, Laming J M 2003 Appl. Phys. J. 584 758

    [23]

    Volk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

    [24]

    Drake R P 2000 Phys. Plasmas 7 4690

    [25]

    Pfeffermann E, Aschenbach B 1996 in Zimmermann H U, Truemper J E, Yorke H ed.: Röntgenstrahlung from the Universe (Report 263 MPE, Garching) 267-268

    [26]

    Hinton J A 2004 Astron. Rev. 48 331

    [27]

    Hofmann W 2003 Proc. 28th ICRC Tsukuba (Tokyo:Univ. Academy Press) p2811

    [28]

    Uchiyama Y, Aharonian F A, Tanaka T, Takahashi T, Maeda Y 2007 Nature 449 576U

    [29]

    Xu H 2002 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [徐涵 2002 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [30]

    Ma Y Y 2004 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [马燕云 2004 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [31]

    Shao F Q 2002 Particle Simulations in Plasma (Beijing: Science Press) (in Chinese) [邵福球 2002 等离子体粒子模拟(北京: 科学出版社)]

    [32]

    Zheng J 2006 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [郑君 2006 博士学位论文 (北京: 中国科学院物理研究所)]

    [33]

    Chen M 2007 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [陈民 2007 博士学位论文 (北京: 中国科学院物理研究所)]

    [34]

    He M Q 2008 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [何民卿 2008 博士学位论文 (北京: 中国科学院物理研究所)]

    [35]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [36]

    Mason R J, Tabak M 1998 Phys. Rev. Lett. 80 524

    [37]

    Lasinski B F, Langdon A B, Hatchett S P, Key M H, Tabak M 1999 Phys. Plasmas 6 2041

    [38]

    Kingham R J, Bell A R 2002 Phys. Rev. Lett. 84 045004

    [39]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363 (in Chinese) [何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363]

    [40]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(R)

    [41]

    Chen M, Sheng Z M, Dong Q L, He M Q, Li Y T, Muhammad A B, Zhang J 2007 Phys. Plasmas 14 053120

    [42]

    Chen M, Sheng Z M, Dong Q L, He M Q, Weng S M, Li Y T, Zhang J 2007 Phys. Plasmas 14 113106

    [43]

    Denavit J 1992 Phys. Rev. Lett. 69 3052

    [44]

    Nakamura T, Kawata S 2003 Phys. Rev. E 67 026403

    [45]

    Völk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

计量
  • 文章访问数:  2006
  • PDF下载量:  332
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-27
  • 修回日期:  2014-12-08
  • 刊出日期:  2015-05-05

激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190;
  • 2. 北京应用物理与计算数学研究所, 北京 100094;
  • 3. 鲁东大学物理与光电工程学院, 烟台 260405;
  • 4. 上海交通大学物理系, 激光等离子体教育部重点实验室, 上海 200240
    基金项目: 

    国家自然科学基金(批准号: 11305013, 11274152)、国家重点基础研究发展计划(批准号: 2013CBA01500)和国家高技术研究发展计划资助的课题.

摘要: 冲击波是天体物理观测中常见的现象, 其对粒子的加速被认为是高能宇宙射线的来源. 宇宙中冲击波周围往往存在很强的磁场, 但人们对于此类强磁场的产生放大过程的理解并不充分. 本文利用二维粒子模拟程序研究了激光与磁化或者非磁化等离子体相互作用产生的冲击波现象, 给出了冲击波波前处磁场的产生放大特性. 研究发现, 作用过程中的自生磁场可以储存能量, 从而进一步加速电子; 当存在外加磁场时, 由冲击波加速的电子和离子的能量都比同条件下非磁化等离子体的能量高; 而且外加磁场藉由冲击波放大倍数则与其值有极大关系. 与天文观测中推断的磁场与背景磁场相比放大千倍这一研究结果的比较可以看出, 天体冲击波周围磁场放大主要是由局域内生磁场导致的.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回