搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于激光等离子体中脉冲强磁场产生的电感耦合线圈

赵佳羿 胡鹏 王雨林 王金灿 唐桧波 胡广月

引用本文:
Citation:

用于激光等离子体中脉冲强磁场产生的电感耦合线圈

赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月

Optimization of pulsed intense magnetic field device for laser plasma experiment via inductively coupled coil

Zhao Jia-Yi, Hu Peng, Wang Yu-Lin, Wang Jin-Can, Tang Hui-Bo, Hu Guang-Yue
PDF
HTML
导出引用
  • 脉冲强磁场装置是磁化激光等离子体实验的核心设备. 本文研制了一种用于优化脉冲强磁场设备的电感耦合线圈, 相对于单匝磁场线圈可以进一步提高磁场强度. 通过实验和模拟研究了电感耦合线圈的初级螺线管匝数和直径对磁场强度的影响, 发现对于2.4 μF电容的放电系统, 电感耦合线圈的初级螺线管在35匝、35 mm直径时, 可以在5 mm内径的次级磁场线圈中获得最高的峰值磁场强度, 是相同尺寸单匝磁场线圈产生磁场强度的3.6倍. 在充电电压20 kV时, 峰值磁场强度达到19 T, 使用铍铜材料的电感耦合线圈克服强磁场中线圈炸裂问题, 在35 kV的充电电压下得到了33 T的峰值磁场强度. 这种新方法产生了更强的磁场、降低了对回路电感的要求、提升了实验排布的灵活性, 为研究强磁场下的激光等离子体行为创造了条件.
    Magnetized laser plasma has attracted a lot of attention in recent years especially in magnetized inertial confinement fusion, laboratory astrophysics, and industrial application. Pulsed intense magnetic field device is the core equipment of magnetized laser plasma experiment. Here in this work, an inductively coupled coil is developed to optimize the pulsed intense magnetic field device. The primary coil of a multi-turn solenoid is used instead of a single-turn coil. Then the energy of the solenoid is delivered to the secondary coil via inductively coupled transformer, which increases the current density markedly. The current generates a stronger magnetic field in the single-turn magnetic field coil. The influence of the diameter and the number of turns of the primary solenoid of the inductively coupled coil on the magnetic field are explored in experiment and simulation. It is found that for a discharge system of 2.4 μF capacitance, the optimized parameters of the primary solenoid are 35 turns and 35 mm diameter. The optimized magnetic field is 3.6 times stronger than that of the conventional directly connected single-turn coil. At a charging voltage of 20 kV, the peak magnetic field reaches 19 T in a magnetic field coil of 5 mm inner diameter. The inductively coupled coil made of CuBe solves the problem of coil expansion in intense magnetic field, and a peak magnetic field of 33 T is obtained at a charging voltage of 35 kV. The present approach creates stronger magnetic field environments. At the same time, the inductively coupled coil reduces the requirements for system inductance, so that components such as energy storage capacitors and switch can be placed far from the coil, which improves the flexibility of the experiment setup.
      通信作者: 唐桧波, tanghb@ustc.edu.cn ; 胡广月, gyhu@ustc.edu.cn
    • 基金项目: 中国科学院战略先导专项项目(批准号: XDB16000000)、国家自然科学基金(批准号: 11775223, 11375197, 11605200, 11275202)、中央高校基本科研业务费专项资金和强场激光物理国家重点实验室开放基金资助的课题
      Corresponding author: Tang Hui-Bo, tanghb@ustc.edu.cn ; Hu Guang-Yue, gyhu@ustc.edu.cn
    • Funds: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16000000), the National Natural Science Foundation of China (Grant Nos. 11775223, 11375197, 11605200, 11275202), the Fundamental Research Fund for the Central Universities, China and the Open Fund of the State Key Laboratory of High Field Laser Physics (SIOM), China
    [1]

    Gotchev O V, Chang P Y, Knauer J P, Meyerhofer D D, Polomarov O, Frenje J, Li C K, Manuel M J E, Petrasso R D, Rygg J R, Séguin F H, Betti R 2009 Phys. Rev. Lett. 103 215004Google Scholar

    [2]

    Chang P Y, Fiksel G, Hohenberger M, Knauer J P, Betti R, Marshall F J, Meyerhofer D D, Séguin F H, Petrasso R D 2011 Phys. Rev. Lett. 107 035006Google Scholar

    [3]

    Hohenberger M, Chang P Y, Fiksel G, Knauer J P, Betti R, Marshall F J, Meyerhofer D D, Séguin F H, Petrasso R D 2012 Phys. Plasmas 19 056306Google Scholar

    [4]

    Bailly-Grandvaux M, Santos J J, Bellei C, et al. 2018 Nat. Commun. 9 102Google Scholar

    [5]

    孙可煦, 黄天晅, 丁永坤, 易荣清, 江少恩, 崔延莉, 汤晓青, 陈久森, 张保汉, 郑志坚 2002 物理学报 51 1750Google Scholar

    Sun K X, Huang T X, Ding Y K, Yi R Q, Jiang S E, Cui Y L, Tang X Q, Chen J S, Zhang B H, Zheng Z J 2002 Acta Phys. Sin. 51 1750Google Scholar

    [6]

    Tang H B, Hu G Y, Liang Y H, Tao T, Wang Y L, Hu P, Zhao B, Zheng J 2018 Plasma Phys. Controlled Fusion 60 5

    [7]

    裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同 2014 物理学报 63 145201Google Scholar

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 63 145201Google Scholar

    [8]

    张凯, 仲佳勇, 裴晓星, 李玉同, 阪和洋一, 魏会冈, 袁大伟, 李芳, 韩波, 王琛, 贺昊, 尹传磊, 廖国前, 方远, 杨骕, 远晓辉, 梁贵云, 王菲鹿, 朱健强, 丁永坤, 张杰, 赵刚 2015 物理学报 64 165201Google Scholar

    Zhang K, Zhong J Y, Pei X X, Li Y T, Sakawa Y, Wei H G, Yuan D W, Li F, Han B, Wang C, He H, Yin C L, Liao G Q, Fang Y, Yang S, Yuan X H, Liang G Y, Wang F L, Zhu J Q, Zhang J, Zhao G 2015 Acta Phys. Sin. 64 165201Google Scholar

    [9]

    Creel J R, Donnelly T, Lunney J G 2016 Appl. Phys. Lett. 109 071104Google Scholar

    [10]

    Law K F F, Bailly-Grandvaux M, Morace A, Sakata S, Matsuo K, Kojima S, Lee S, Vaisseau X, Arikawa Y, Yogo A, Kondo K, Zhang Z, Bellei C, Santos J J, Fujioka S, Azechi H 2016 Appl. Phys. Lett. 108 091104

    [11]

    Pollock B B, Froula D H, Davis P F, Ross J S, Fulkerson S, Bower J, Satariano J, Price D, Krushelnick K, Glenzer S H 2006 Rev. Sci. Instrum. 77 114703Google Scholar

    [12]

    Albertazzi B, BéArd J, Ciardi A, et al. 2013 Rev. Sci. Instrum. 84 043505Google Scholar

    [13]

    Pollock B B, Froula D H, Tynan G R, Divol L, Price D, Costa R, Yepiz F, Fulkerson S, Mangini F, Glenzer Het 2008 Rev. Sci. Instrum. 79 10F550Google Scholar

    [14]

    Gotchev O V, Knauer J P, Chang P Y, Jang N W, Shoup III M J, Meyerhofer D D, Betti R 2009 Rev. Sci. Instrum. 80 043504Google Scholar

    [15]

    Li C X, Jin X, Wang G P, Zhang B Z, Gong H T, Gan Y Q, Li F, Song F L 2021 Laser Part. Beams 10 1Google Scholar

    [16]

    Barnak D H, Davies J R, Fiksel G, Chang P Y, Zabir E, Betti R 2018 Rev. Sci. Instrum. 89 033501Google Scholar

    [17]

    Zhu J Q 2018 High Power Laser Sci. Eng. 6 e55

    [18]

    Fiksel G, Agliata A, Barnak D, Brent G, Chang P Y, Folnsbee L, Gates G, Hasset D, Lonobile D, Magoon J, Mastrosimone D, Shoup III M J, Betti R 2015 Rev. Sci. Instrum. 86 016105Google Scholar

    [19]

    Wang Y L, Hu G Y, Hu P, Tang H B, Yuan P, Zheng J 2019 J. Instrum. 14 P09024Google Scholar

    [20]

    Wang Y L, Hu G Y, Hu P, Liang Y H, Yuan P, Zheng J 2019 Rev. Sci. Instrum. 90 75108Google Scholar

    [21]

    Hu P, Hu G Y, Wang Y L, Tang H B, Zheng J 2020 Rev. Sci. Instrum. 91 014703Google Scholar

    [22]

    Hu G Y, Liang Y H, Song F L, Yuan P, Wang Y L, Zhao B, Zheng J 2015 Plasma Sci. Technol. 17 134Google Scholar

    [23]

    Fiksel G, Backhus R, Barnak D H, Chang P Y, Davies J R, Jacobs-Perkins D, McNally P, Spielman R B, Viges E, Betti R 2018 Rev. Sci. Instrum. 89 084703Google Scholar

    [24]

    李瀚荪 2006 电路分析基础 (第4版) (北京: 高等教育出版社) 第12页

    Li H S 2006 Circuit Analysis (Vol. 4) (Beijing: Higher Education Press) p12 (in Chinese)

    [25]

    布卢姆H 著 (江伟华, 张驰译) 2008 脉冲功率系统的原理与应用 (北京: 清华大学出版社) 第188页

    Bluhm H(translated by Jiang W H, Zhang C)2008 Pulsed Power Systems: Principles and Applications (Beijing: Tsinghua University Press) p188 (in Chinese)

    [26]

    张丝雨 2005 最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册(香港: 中国科技文化出版社)第709页、第1122页

    Zhang S Y 2005 The Latest Metal Material Grades, Properties, Uses and Comparison of Chinese and Foreign Grades, Quick-use Quick Reference Practical Manual (Hong Kong: China Science and Culture Publishing Press) p709, p1122 (in Chinese)

  • 图 1  脉冲强磁场设备的电路图. 橘色框内是初级回路, 蓝色框内是次级回路. $ {L}_{\mathrm{M}} $$ {R}_{\mathrm{M}} $分别为初级回路除螺线管之外的电感和电阻; $ {L}_{\mathrm{P}} $$ {R}_{\mathrm{P}} $分别为变压器初级螺线管的电感和电阻; $ {L}_{\mathrm{S}} $$ {R}_{\mathrm{S}} $分别为变压器次级线圈的电感和电阻; $ {L}_{\mathrm{C}} $$ {R}_{\mathrm{C}} $分别为次级回路中除变压器次级线圈以外的电感和电阻; $ C $是电容器的电容

    Fig. 1.  Circuit diagram of a pulsed intense magnetic field device. The left orange box is the primary circuit, and the right blue box is the secondary circuit. $ {L}_{\mathrm{M}} $ and $ {R}_{\mathrm{M}} $ are the inductance and resistance of the primary circuit except the solenoid; $ {L}_{\mathrm{P}} $ and $ {R}_{\mathrm{P}} $ are the inductance and resistance of the transformer primary solenoid; $ {L}_{\mathrm{S}} $ and $ {R}_{\mathrm{S}} $ are the inductance and resistance of the transformer secondary coil; $ {L}_{\mathrm{C}} $ and $ {R}_{\mathrm{C}} $ are the inductance and resistance of the secondary circuit except the secondary coil of the transformer; C is the capacitance of the capacitor.

    图 2  电感耦合线圈的(a) CAD设计图和(b)实物图

    Fig. 2.  (a) CAD design drawing and (b) photograph of inductively coupled coil.

    图 3  磁场线圈中心的峰值磁场强度随初级螺线管的匝数和直径变化

    Fig. 3.  The peak magnetic field at the center of magnetic field coil varies with the number of turns and diameter of the primary solenoid.

    图 4  初级螺线管直径35 mm时, 螺线管部分的电感、电阻和磁场脉冲上升沿随线圈匝数的变化

    Fig. 4.  Inductance and resistance of the primary solenoid, and the rising time of the magnetic field pulse at different solenoids’ numbers of turns. The diameter of the primary solenoid keeps at 35 mm.

    图 5  使用35匝、直径35 mm初级螺线管的电感耦合线圈在20 kV时的放电测试结果和模拟结果 (a)初级回路电流波形; (b)磁场线圈的磁场波形; (c)磁场峰值时磁场强度的二维轴对称分布; (d)线圈轴向上的峰值磁场分布

    Fig. 5.  Experimental and simulation results of the pulsed magnetic field at 20 kV discharge voltage using an inductively coupled coil with primary solenoid of 35-turns and 35-mm diameter: (a) Current pulse of the primary solenoid; (b) magnetic field pulse at the center of the magnetic field coil; (c) two dimensional axisymmetric distribution of the peak magnetic field; (d) the peak magnetic field distribution along the axis of the magnetic field coil.

    图 6  磁场线圈产生的峰值磁场强度随放电电压的变化. 虚线为模拟结果, 点为实验结果. 电感耦合线圈材料分别是Cu, CuBe和马氏体时效钢, 屈服强度分别为[25]: 黄铜200 Mpa, 铍铜1 GPa, 马氏体时效钢2 GPa

    Fig. 6.  The peak magnetic field produced by magnetic field coil varies with the discharge voltage. The dotted line is the simulation result, and the dot is the experimental result. These inductively coupled coils are made of Cu, CuBe or Maraging steel with yield strength of: Cu ~200 MPa, CuBe ~1 GPa, Maraging steele ~2 GPa.

    表 1  最高磁场强度时脉冲强磁场设备的电感和电阻分布

    Table 1.  The distribution of inductance and resistance of pulsed magnetic field device.

    参数放电系统初级螺线管次级线圈次级回路(不包
    括次级线圈)
    电感450 $ \mathrm{n}\mathrm{H} $16.6 $\text{μ}\mathrm{H}$15 $ \mathrm{n}\mathrm{H} $3 nH
    电阻0.1 Ω32 mΩ0.2 mΩ0.9 mΩ
    下载: 导出CSV
  • [1]

    Gotchev O V, Chang P Y, Knauer J P, Meyerhofer D D, Polomarov O, Frenje J, Li C K, Manuel M J E, Petrasso R D, Rygg J R, Séguin F H, Betti R 2009 Phys. Rev. Lett. 103 215004Google Scholar

    [2]

    Chang P Y, Fiksel G, Hohenberger M, Knauer J P, Betti R, Marshall F J, Meyerhofer D D, Séguin F H, Petrasso R D 2011 Phys. Rev. Lett. 107 035006Google Scholar

    [3]

    Hohenberger M, Chang P Y, Fiksel G, Knauer J P, Betti R, Marshall F J, Meyerhofer D D, Séguin F H, Petrasso R D 2012 Phys. Plasmas 19 056306Google Scholar

    [4]

    Bailly-Grandvaux M, Santos J J, Bellei C, et al. 2018 Nat. Commun. 9 102Google Scholar

    [5]

    孙可煦, 黄天晅, 丁永坤, 易荣清, 江少恩, 崔延莉, 汤晓青, 陈久森, 张保汉, 郑志坚 2002 物理学报 51 1750Google Scholar

    Sun K X, Huang T X, Ding Y K, Yi R Q, Jiang S E, Cui Y L, Tang X Q, Chen J S, Zhang B H, Zheng Z J 2002 Acta Phys. Sin. 51 1750Google Scholar

    [6]

    Tang H B, Hu G Y, Liang Y H, Tao T, Wang Y L, Hu P, Zhao B, Zheng J 2018 Plasma Phys. Controlled Fusion 60 5

    [7]

    裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同 2014 物理学报 63 145201Google Scholar

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 63 145201Google Scholar

    [8]

    张凯, 仲佳勇, 裴晓星, 李玉同, 阪和洋一, 魏会冈, 袁大伟, 李芳, 韩波, 王琛, 贺昊, 尹传磊, 廖国前, 方远, 杨骕, 远晓辉, 梁贵云, 王菲鹿, 朱健强, 丁永坤, 张杰, 赵刚 2015 物理学报 64 165201Google Scholar

    Zhang K, Zhong J Y, Pei X X, Li Y T, Sakawa Y, Wei H G, Yuan D W, Li F, Han B, Wang C, He H, Yin C L, Liao G Q, Fang Y, Yang S, Yuan X H, Liang G Y, Wang F L, Zhu J Q, Zhang J, Zhao G 2015 Acta Phys. Sin. 64 165201Google Scholar

    [9]

    Creel J R, Donnelly T, Lunney J G 2016 Appl. Phys. Lett. 109 071104Google Scholar

    [10]

    Law K F F, Bailly-Grandvaux M, Morace A, Sakata S, Matsuo K, Kojima S, Lee S, Vaisseau X, Arikawa Y, Yogo A, Kondo K, Zhang Z, Bellei C, Santos J J, Fujioka S, Azechi H 2016 Appl. Phys. Lett. 108 091104

    [11]

    Pollock B B, Froula D H, Davis P F, Ross J S, Fulkerson S, Bower J, Satariano J, Price D, Krushelnick K, Glenzer S H 2006 Rev. Sci. Instrum. 77 114703Google Scholar

    [12]

    Albertazzi B, BéArd J, Ciardi A, et al. 2013 Rev. Sci. Instrum. 84 043505Google Scholar

    [13]

    Pollock B B, Froula D H, Tynan G R, Divol L, Price D, Costa R, Yepiz F, Fulkerson S, Mangini F, Glenzer Het 2008 Rev. Sci. Instrum. 79 10F550Google Scholar

    [14]

    Gotchev O V, Knauer J P, Chang P Y, Jang N W, Shoup III M J, Meyerhofer D D, Betti R 2009 Rev. Sci. Instrum. 80 043504Google Scholar

    [15]

    Li C X, Jin X, Wang G P, Zhang B Z, Gong H T, Gan Y Q, Li F, Song F L 2021 Laser Part. Beams 10 1Google Scholar

    [16]

    Barnak D H, Davies J R, Fiksel G, Chang P Y, Zabir E, Betti R 2018 Rev. Sci. Instrum. 89 033501Google Scholar

    [17]

    Zhu J Q 2018 High Power Laser Sci. Eng. 6 e55

    [18]

    Fiksel G, Agliata A, Barnak D, Brent G, Chang P Y, Folnsbee L, Gates G, Hasset D, Lonobile D, Magoon J, Mastrosimone D, Shoup III M J, Betti R 2015 Rev. Sci. Instrum. 86 016105Google Scholar

    [19]

    Wang Y L, Hu G Y, Hu P, Tang H B, Yuan P, Zheng J 2019 J. Instrum. 14 P09024Google Scholar

    [20]

    Wang Y L, Hu G Y, Hu P, Liang Y H, Yuan P, Zheng J 2019 Rev. Sci. Instrum. 90 75108Google Scholar

    [21]

    Hu P, Hu G Y, Wang Y L, Tang H B, Zheng J 2020 Rev. Sci. Instrum. 91 014703Google Scholar

    [22]

    Hu G Y, Liang Y H, Song F L, Yuan P, Wang Y L, Zhao B, Zheng J 2015 Plasma Sci. Technol. 17 134Google Scholar

    [23]

    Fiksel G, Backhus R, Barnak D H, Chang P Y, Davies J R, Jacobs-Perkins D, McNally P, Spielman R B, Viges E, Betti R 2018 Rev. Sci. Instrum. 89 084703Google Scholar

    [24]

    李瀚荪 2006 电路分析基础 (第4版) (北京: 高等教育出版社) 第12页

    Li H S 2006 Circuit Analysis (Vol. 4) (Beijing: Higher Education Press) p12 (in Chinese)

    [25]

    布卢姆H 著 (江伟华, 张驰译) 2008 脉冲功率系统的原理与应用 (北京: 清华大学出版社) 第188页

    Bluhm H(translated by Jiang W H, Zhang C)2008 Pulsed Power Systems: Principles and Applications (Beijing: Tsinghua University Press) p188 (in Chinese)

    [26]

    张丝雨 2005 最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册(香港: 中国科技文化出版社)第709页、第1122页

    Zhang S Y 2005 The Latest Metal Material Grades, Properties, Uses and Comparison of Chinese and Foreign Grades, Quick-use Quick Reference Practical Manual (Hong Kong: China Science and Culture Publishing Press) p709, p1122 (in Chinese)

  • [1] 张振驰, 唐桧波, 王金灿, 佀化冲, 王志, 蓝翔, 胡广月. 背景气体对激光等离子体和外磁场界面上槽纹不稳定性的影响. 物理学报, 2023, 72(22): 225201. doi: 10.7498/aps.72.20231108
    [2] 殷佳鹏, 刘圣广. 用单发电子束探测激光等离子体内电磁场演化实验研究. 物理学报, 2022, 71(1): 012901. doi: 10.7498/aps.71.20211374
    [3] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [4] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器. 物理学报, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [5] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [6] 薄勇, 赵青, 罗先刚, 范佳, 刘颖, 刘建卫. 电磁波在时变磁化等离子体信道中通信性能的实验研究. 物理学报, 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [7] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [8] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [9] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [10] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [11] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [12] 刘少斌, 顾长青, 周建江, 袁乃昌. 磁化等离子体光子晶体的FDTD分析. 物理学报, 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [13] 郑志远, 张 杰, 郝作强, 远晓辉, 张 喆, 鲁 欣, 王兆华, 魏志义. 靶结构对激光等离子体动量耦合系数的影响. 物理学报, 2006, 55(1): 326-330. doi: 10.7498/aps.55.326
    [14] 张秋菊, 盛政明, 苍 宇, 张 杰. 激光脉冲诱导的等离子体密度调制及其产生的相位反射. 物理学报, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [15] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法. 物理学报, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [16] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法. 物理学报, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [17] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [18] 王薇, 张杰, V.K.Senecha. 对激光等离子体中X射线的产生与辐射加热研究. 物理学报, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [19] 唐德礼, 孙爱萍, 邱孝明. 均匀磁化等离子体与雷达波相互作用的数值分析. 物理学报, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  3790
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-04-08
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回