搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用单发电子束探测激光等离子体内电磁场演化实验研究

殷佳鹏 刘圣广

引用本文:
Citation:

用单发电子束探测激光等离子体内电磁场演化实验研究

殷佳鹏, 刘圣广

A single long electron bunch detect electromagnetic field evolution in laser plasma

Yin Jia-Peng, Liu Sheng-Guang
PDF
HTML
导出引用
  • 惯性约束核聚变研究最近取得可喜成果, 美国国家点火装置NIF装置实验上聚变增益达到了输入激光能量的三分之二. 但是, 这一成果与人们的预期还有较大差距, 需要更深入研究激光与等离子体相互作用初期的动力学过程. 我们发展了一种新方法, 用单发长脉冲电子束团为探针, 测量激光等离子体内电磁场在整个等离子体持续时间内的演化过程. 实验中, 高压静电电子源产生能量0—100 keV 连续可调、脉宽10ns的电子束团. 1 J, 532 nm, 脉宽约4 ns的激光脉冲聚焦到银靶上, 激发产生等离子体. 电子束团穿过激光等离子体, 被其中的电磁场调制后成像, 单发电子束团时间宽度会覆盖整个等离子体持续时间, 通过分析电子束团的调制强度, 推得等离子体内电磁场的变化. 实验上成功实现了单发电子束团对整个激光等离子体内电场的诊断测量, 获得了演化曲线, 推算出实验条件下电子束通过路径上平均电场的最大值约为 $ 7.74\times {10}^{5}\;\mathrm{V}/\mathrm{m} $ .
    Laser fusion research needs much more high-time-resolved diagnostic technologies to study the dynamic process in laser plasma. We develop a special method and setup a device to measure the electromagnetic field in the plasma by using a single electron bunch. The measurement covers the whole-time window of the plasma process driven by a 3.6 ns laser pulse. An electron source can generate a single electron bunch with 0–100 keV energy and 10ns bunch length. A laser pulse with 1 J energy and 532 nm wavelength irradiates on the edge of a silver target, the target nearby the irradiated spot is ionized into plasma. At the beginning of plasma generation, the head of the electron beam begins to pass through the plasma. Electromagnetic field in plasma pushes the electrons transversely. A high voltage pulse at a good time is used to deflect the electrons linearly in the transverse direction to avoid overlapping of the different electrons on the scintillator downstream. By analyzing the deflection distances of the different electrons in this single bunch, we succesfully achieve an average electronic field along the trajectory in the plasma in the whole plasma process. The maximum value of this electronic field is $ 7.74\times {10}^{5}\;\mathrm{V}/\mathrm{m} $ .
      通信作者: 刘圣广, liushg@sjtu.edu.cn
    • 基金项目: 国家自然科学联合基金(批准号: U1832185)资助的课题.
      Corresponding author: Liu Sheng-Guang, liushg@sjtu.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1832185).
    [1]

    Lindl J D, Hammel B A, Logan B G, Meyerhofer D D, Payne S A, Sethian J D 2003 Plasma Phys. Controlled Fusion 45 A217Google Scholar

    [2]

    Edwards C B, Danson C N 2015 High Power Laser Sci. Eng. 3 e4Google Scholar

    [3]

    Zohuri B 2017 Inertial Confinement Fusion Driven Thermonuclear Energy (Albuquerque: Springer International Publishing) pp133−192

    [4]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, Mccrory R L, Mckenty P W, Meyerhofer D D, Myatt J F 2015 Phys. Plasmas 22 139

    [5]

    王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同 2021 物理学报 70 085205Google Scholar

    Wang T Z, Lei H Y, Sun F Z, Wang D, Liao G Q, Li Y T 2021 Acta Phys. Sin. 70 085205Google Scholar

    [6]

    刘家合, 鲁佳哲, 雷俊杰, 高勋, 林 景全 2020 物理学报 69 057401Google Scholar

    [7]

    Liu L B, Deng H X, Zu X T Yuan X D Zheng W G 2020 Chin. Phys. B 29 507

    [8]

    杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平 2019 物理学报 68 185205Google Scholar

    Du B, Cai H B, Zhang W S, Chen J, Zou S Y, Zhu S P 2019 Acta Phys. Sin. 68 185205Google Scholar

    [9]

    Eliezer S 2010 45 181

    [10]

    Li C K, Seguin F H, Frenje J A, Rosenberg M J, Knauer J 2009 Phys. Rev. Lett. 102(20)

    [11]

    Li C K, Zylstra A B, Frenje J A, Séguin F H, Sinenian N, Petrasso R D, Amendt P A, Bionta R, Friedrich S, Collins G W 2013 New J. Phys. 15 025040Google Scholar

    [12]

    Chen Y, Zhang W, Bao J, Lin Z, Dong C, Cao J 2020 Chin. Phys. Lett. 37 095201Google Scholar

    [13]

    曹柱荣, 张海鹰, 董建军, 袁铮, 刘慎业, 江少恩, 丁永坤 2011 物理学报 60 045212Google Scholar

    Cao Z R, Zhang H Y, Dong J J, Yuan Z, Miao W Y, Liu S Y, Jiang S E, Ding Y K 2011 Acta Phys. Sin. 60 045212Google Scholar

    [14]

    Glenzer S H, Lee H J, Davis P, Doppner T, Falcone R W, Fortmann C, Hanmmel B A, Kritcher A L, Landen O L, Lee R W, Munro D H, Redmer R 2010 High Energy Density Phys. 6 1Google Scholar

    [15]

    Fahad M, Ali S, Iqbal Y 2019 Plasma Sci. Technol. 21 2058

    [16]

    Azechi H, Shiraga H, Miyanaga N, Nishimura H 1997 Fusion Eng. Des. 34−35 37

    [17]

    Borghesi M 2002 Phys. Plasma 9 2214Google Scholar

    [18]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [19]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301Google Scholar

    [20]

    Li C K, Seguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001Google Scholar

    [21]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Stephens R 2003 Phys. Rev. Lett. 91 125004Google Scholar

    [22]

    马文君, 刘志鹏, 王鹏业, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

    [23]

    Zhu P, Zhang Z, Chen L, Zheng J, Li R, Wang W, Li J, Wang X, Cao J, Qian D 2010 Appl. Phys. Lett. 97 155

    [24]

    Chen L, Li R, Chen J, Zhu P, Liu F, Cao J, Sheng Z, Zhang J 2016 Proc. Natl. Acad. Sci. U.S.A. 112 47

    [25]

    Du B, Cai H B, Zhang W S, Wang X F, Zhu S P 2021 Matter Radiat. Extrem. 6 035903Google Scholar

  • 图 1  实验原理和装置示意图 (a) 装置总体布局; (b) 被等离子体内电磁场调制后的电子束在闪烁体上成像示意图; (c) 靶附近的局部放大图

    Fig. 1.  The experimental principle: (a) The set-up of the whole system; (b) imaging principle of the electron beam on the scintillator after being modulated in the plasma; (c) the enlarged setup nearby the target.

    图 2  电子枪束流模拟, 能量100 keV的电子束在靶位置聚焦

    Fig. 2.  Simulation result on electron source, beam with 100 keV energy focused on the target.

    图 3  实验测量到的电子束分布 (a) 电子束团的纵向分布; (b) 电子束团在成像板上得到的束斑

    Fig. 3.  Electron bunch from Gun: (a) The longitudinal distribution of electron bunch; (b) the beam profile at imaging plate.

    图 4  激光的时间和空间分布 (a) 激光的时间分布; (b)激光在银靶处束腰光斑

    Fig. 4.  The time and space distribution of laser pulse: (a) The time distribution; (b) the laser waist at the target.

    图 5  带上负载测得的两偏转极板间的高压脉冲信号. 平顶宽度5 μs, 最高电压6.32 kV, 脉冲电压信号有一段线性上升沿5.44 kV/10 ns

    Fig. 5.  The HV signal between the two deflecting plates with load, HV pulse with 5 μs flattop and 6.32 kV maximum, a linear rise edge at the slope of 5.44 kV/10 ns.

    图 6  没有激光时的电子束斑. 上面的束斑, 偏转极板间没有电压; 下面的束斑, 偏转极板间有电压

    Fig. 6.  Beam profile without laser pulse. The above one is beam profile without deflecting HV; The below one is beam profile with deflecting HV.

    图 7  10 ns电子束被等离子体内电场调制后分布

    Fig. 7.  Distribution of the electron bunch with 10 ns length modulated by the electric field of the laser plasma.

  • [1]

    Lindl J D, Hammel B A, Logan B G, Meyerhofer D D, Payne S A, Sethian J D 2003 Plasma Phys. Controlled Fusion 45 A217Google Scholar

    [2]

    Edwards C B, Danson C N 2015 High Power Laser Sci. Eng. 3 e4Google Scholar

    [3]

    Zohuri B 2017 Inertial Confinement Fusion Driven Thermonuclear Energy (Albuquerque: Springer International Publishing) pp133−192

    [4]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, Mccrory R L, Mckenty P W, Meyerhofer D D, Myatt J F 2015 Phys. Plasmas 22 139

    [5]

    王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同 2021 物理学报 70 085205Google Scholar

    Wang T Z, Lei H Y, Sun F Z, Wang D, Liao G Q, Li Y T 2021 Acta Phys. Sin. 70 085205Google Scholar

    [6]

    刘家合, 鲁佳哲, 雷俊杰, 高勋, 林 景全 2020 物理学报 69 057401Google Scholar

    [7]

    Liu L B, Deng H X, Zu X T Yuan X D Zheng W G 2020 Chin. Phys. B 29 507

    [8]

    杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平 2019 物理学报 68 185205Google Scholar

    Du B, Cai H B, Zhang W S, Chen J, Zou S Y, Zhu S P 2019 Acta Phys. Sin. 68 185205Google Scholar

    [9]

    Eliezer S 2010 45 181

    [10]

    Li C K, Seguin F H, Frenje J A, Rosenberg M J, Knauer J 2009 Phys. Rev. Lett. 102(20)

    [11]

    Li C K, Zylstra A B, Frenje J A, Séguin F H, Sinenian N, Petrasso R D, Amendt P A, Bionta R, Friedrich S, Collins G W 2013 New J. Phys. 15 025040Google Scholar

    [12]

    Chen Y, Zhang W, Bao J, Lin Z, Dong C, Cao J 2020 Chin. Phys. Lett. 37 095201Google Scholar

    [13]

    曹柱荣, 张海鹰, 董建军, 袁铮, 刘慎业, 江少恩, 丁永坤 2011 物理学报 60 045212Google Scholar

    Cao Z R, Zhang H Y, Dong J J, Yuan Z, Miao W Y, Liu S Y, Jiang S E, Ding Y K 2011 Acta Phys. Sin. 60 045212Google Scholar

    [14]

    Glenzer S H, Lee H J, Davis P, Doppner T, Falcone R W, Fortmann C, Hanmmel B A, Kritcher A L, Landen O L, Lee R W, Munro D H, Redmer R 2010 High Energy Density Phys. 6 1Google Scholar

    [15]

    Fahad M, Ali S, Iqbal Y 2019 Plasma Sci. Technol. 21 2058

    [16]

    Azechi H, Shiraga H, Miyanaga N, Nishimura H 1997 Fusion Eng. Des. 34−35 37

    [17]

    Borghesi M 2002 Phys. Plasma 9 2214Google Scholar

    [18]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [19]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301Google Scholar

    [20]

    Li C K, Seguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001Google Scholar

    [21]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Stephens R 2003 Phys. Rev. Lett. 91 125004Google Scholar

    [22]

    马文君, 刘志鹏, 王鹏业, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

    [23]

    Zhu P, Zhang Z, Chen L, Zheng J, Li R, Wang W, Li J, Wang X, Cao J, Qian D 2010 Appl. Phys. Lett. 97 155

    [24]

    Chen L, Li R, Chen J, Zhu P, Liu F, Cao J, Sheng Z, Zhang J 2016 Proc. Natl. Acad. Sci. U.S.A. 112 47

    [25]

    Du B, Cai H B, Zhang W S, Wang X F, Zhu S P 2021 Matter Radiat. Extrem. 6 035903Google Scholar

  • [1] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [2] 王辉林, 廖艳林, 赵艳, 章文, 谌正艮. 基于多激光束驱动准单能高能质子束模拟研究. 物理学报, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [3] 张振驰, 唐桧波, 王金灿, 佀化冲, 王志, 蓝翔, 胡广月. 背景气体对激光等离子体和外磁场界面上槽纹不稳定性的影响. 物理学报, 2023, 72(22): 225201. doi: 10.7498/aps.72.20231108
    [4] 颜森林. 激光局域网络的混沌控制及并行队列同步. 物理学报, 2021, 70(8): 080501. doi: 10.7498/aps.70.20201251
    [5] 王艳红, 王磊, 武京治. 神经微管振动产生纳米尺度内电磁场作用. 物理学报, 2021, 70(15): 158703. doi: 10.7498/aps.70.20210421
    [6] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布. 物理学报, 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [7] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈. 物理学报, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [8] 颜森林. 激光混沌并行串联同步及其在中继器保密通信系统中的应用. 物理学报, 2019, 68(17): 170502. doi: 10.7498/aps.68.20190212
    [9] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [10] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [11] 颜森林. 激光混沌并联同步及其在全光逻辑门中的应用研究. 物理学报, 2013, 62(23): 230504. doi: 10.7498/aps.62.230504
    [12] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [13] 颜森林, 汪胜前. 激光混沌串联同步以及混沌中继器系统理论研究. 物理学报, 2006, 55(4): 1687-1695. doi: 10.7498/aps.55.1687
    [14] 陈 民, 盛政明, 郑 君, 张 杰. 强激光与高密度气体相互作用中电子和离子加速的数值模拟. 物理学报, 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [15] 颜森林. 量子阱激光器混沌相位控制同步以及编码研究. 物理学报, 2005, 54(3): 1098-1104. doi: 10.7498/aps.54.1098
    [16] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化. 物理学报, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [17] 张 勤, 班春燕, 崔建忠, 巴启先, 路贵民, 张北江. CREM法半连铸Al合金过程中电磁场对溶质元素固溶的影响机理. 物理学报, 2003, 52(10): 2642-2648. doi: 10.7498/aps.52.2642
    [18] 杨家敏, 丁耀南, 陈 波, 郑志坚, 杨国洪, 张保汉, 王耀梅, 张文海. 等电子法测量小能量激光打靶等离子体电子温度. 物理学报, 2003, 52(2): 411-414. doi: 10.7498/aps.52.411
    [19] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度. 物理学报, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [20] 吴奇学. 有旋电子在电磁场及二维谐振子场中运动的双波描述. 物理学报, 2000, 49(11): 2118-2122. doi: 10.7498/aps.49.2118
计量
  • 文章访问数:  4243
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-25
  • 修回日期:  2021-09-17
  • 上网日期:  2021-09-10
  • 刊出日期:  2022-01-05

/

返回文章
返回