-
惯性约束核聚变研究最近取得可喜成果, 美国国家点火装置NIF装置实验上聚变增益达到了输入激光能量的三分之二. 但是, 这一成果与人们的预期还有较大差距, 需要更深入研究激光与等离子体相互作用初期的动力学过程. 我们发展了一种新方法, 用单发长脉冲电子束团为探针, 测量激光等离子体内电磁场在整个等离子体持续时间内的演化过程. 实验中, 高压静电电子源产生能量0—100 keV 连续可调、脉宽10ns的电子束团. 1 J, 532 nm, 脉宽约4 ns的激光脉冲聚焦到银靶上, 激发产生等离子体. 电子束团穿过激光等离子体, 被其中的电磁场调制后成像, 单发电子束团时间宽度会覆盖整个等离子体持续时间, 通过分析电子束团的调制强度, 推得等离子体内电磁场的变化. 实验上成功实现了单发电子束团对整个激光等离子体内电场的诊断测量, 获得了演化曲线, 推算出实验条件下电子束通过路径上平均电场的最大值约为
$ 7.74\times {10}^{5}\;\mathrm{V}/\mathrm{m} $ .Laser fusion research needs much more high-time-resolved diagnostic technologies to study the dynamic process in laser plasma. We develop a special method and setup a device to measure the electromagnetic field in the plasma by using a single electron bunch. The measurement covers the whole-time window of the plasma process driven by a 3.6 ns laser pulse. An electron source can generate a single electron bunch with 0–100 keV energy and 10ns bunch length. A laser pulse with 1 J energy and 532 nm wavelength irradiates on the edge of a silver target, the target nearby the irradiated spot is ionized into plasma. At the beginning of plasma generation, the head of the electron beam begins to pass through the plasma. Electromagnetic field in plasma pushes the electrons transversely. A high voltage pulse at a good time is used to deflect the electrons linearly in the transverse direction to avoid overlapping of the different electrons on the scintillator downstream. By analyzing the deflection distances of the different electrons in this single bunch, we succesfully achieve an average electronic field along the trajectory in the plasma in the whole plasma process. The maximum value of this electronic field is$ 7.74\times {10}^{5}\;\mathrm{V}/\mathrm{m} $ .-
Keywords:
- electron beam /
- laser Plasma /
- electromagnetic field /
- synchronization
[1] Lindl J D, Hammel B A, Logan B G, Meyerhofer D D, Payne S A, Sethian J D 2003 Plasma Phys. Controlled Fusion 45 A217Google Scholar
[2] Edwards C B, Danson C N 2015 High Power Laser Sci. Eng. 3 e4Google Scholar
[3] Zohuri B 2017 Inertial Confinement Fusion Driven Thermonuclear Energy (Albuquerque: Springer International Publishing) pp133−192
[4] Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, Mccrory R L, Mckenty P W, Meyerhofer D D, Myatt J F 2015 Phys. Plasmas 22 139
[5] 王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同 2021 物理学报 70 085205Google Scholar
Wang T Z, Lei H Y, Sun F Z, Wang D, Liao G Q, Li Y T 2021 Acta Phys. Sin. 70 085205Google Scholar
[6] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林 景全 2020 物理学报 69 057401Google Scholar
[7] Liu L B, Deng H X, Zu X T Yuan X D Zheng W G 2020 Chin. Phys. B 29 507
[8] 杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平 2019 物理学报 68 185205Google Scholar
Du B, Cai H B, Zhang W S, Chen J, Zou S Y, Zhu S P 2019 Acta Phys. Sin. 68 185205Google Scholar
[9] Eliezer S 2010 45 181
[10] Li C K, Seguin F H, Frenje J A, Rosenberg M J, Knauer J 2009 Phys. Rev. Lett. 102(20)
[11] Li C K, Zylstra A B, Frenje J A, Séguin F H, Sinenian N, Petrasso R D, Amendt P A, Bionta R, Friedrich S, Collins G W 2013 New J. Phys. 15 025040Google Scholar
[12] Chen Y, Zhang W, Bao J, Lin Z, Dong C, Cao J 2020 Chin. Phys. Lett. 37 095201Google Scholar
[13] 曹柱荣, 张海鹰, 董建军, 袁铮, 刘慎业, 江少恩, 丁永坤 2011 物理学报 60 045212Google Scholar
Cao Z R, Zhang H Y, Dong J J, Yuan Z, Miao W Y, Liu S Y, Jiang S E, Ding Y K 2011 Acta Phys. Sin. 60 045212Google Scholar
[14] Glenzer S H, Lee H J, Davis P, Doppner T, Falcone R W, Fortmann C, Hanmmel B A, Kritcher A L, Landen O L, Lee R W, Munro D H, Redmer R 2010 High Energy Density Phys. 6 1Google Scholar
[15] Fahad M, Ali S, Iqbal Y 2019 Plasma Sci. Technol. 21 2058
[16] Azechi H, Shiraga H, Miyanaga N, Nishimura H 1997 Fusion Eng. Des. 34−35 37
[17] Borghesi M 2002 Phys. Plasma 9 2214Google Scholar
[18] Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J 2006 Phys. Rev. Lett. 97 135003Google Scholar
[19] Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301Google Scholar
[20] Li C K, Seguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001Google Scholar
[21] Patel P K, Mackinnon A J, Key M H, Cowan T E, Stephens R 2003 Phys. Rev. Lett. 91 125004Google Scholar
[22] 马文君, 刘志鹏, 王鹏业, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar
Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar
[23] Zhu P, Zhang Z, Chen L, Zheng J, Li R, Wang W, Li J, Wang X, Cao J, Qian D 2010 Appl. Phys. Lett. 97 155
[24] Chen L, Li R, Chen J, Zhu P, Liu F, Cao J, Sheng Z, Zhang J 2016 Proc. Natl. Acad. Sci. U.S.A. 112 47
[25] Du B, Cai H B, Zhang W S, Wang X F, Zhu S P 2021 Matter Radiat. Extrem. 6 035903Google Scholar
-
-
[1] Lindl J D, Hammel B A, Logan B G, Meyerhofer D D, Payne S A, Sethian J D 2003 Plasma Phys. Controlled Fusion 45 A217Google Scholar
[2] Edwards C B, Danson C N 2015 High Power Laser Sci. Eng. 3 e4Google Scholar
[3] Zohuri B 2017 Inertial Confinement Fusion Driven Thermonuclear Energy (Albuquerque: Springer International Publishing) pp133−192
[4] Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, Mccrory R L, Mckenty P W, Meyerhofer D D, Myatt J F 2015 Phys. Plasmas 22 139
[5] 王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同 2021 物理学报 70 085205Google Scholar
Wang T Z, Lei H Y, Sun F Z, Wang D, Liao G Q, Li Y T 2021 Acta Phys. Sin. 70 085205Google Scholar
[6] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林 景全 2020 物理学报 69 057401Google Scholar
[7] Liu L B, Deng H X, Zu X T Yuan X D Zheng W G 2020 Chin. Phys. B 29 507
[8] 杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平 2019 物理学报 68 185205Google Scholar
Du B, Cai H B, Zhang W S, Chen J, Zou S Y, Zhu S P 2019 Acta Phys. Sin. 68 185205Google Scholar
[9] Eliezer S 2010 45 181
[10] Li C K, Seguin F H, Frenje J A, Rosenberg M J, Knauer J 2009 Phys. Rev. Lett. 102(20)
[11] Li C K, Zylstra A B, Frenje J A, Séguin F H, Sinenian N, Petrasso R D, Amendt P A, Bionta R, Friedrich S, Collins G W 2013 New J. Phys. 15 025040Google Scholar
[12] Chen Y, Zhang W, Bao J, Lin Z, Dong C, Cao J 2020 Chin. Phys. Lett. 37 095201Google Scholar
[13] 曹柱荣, 张海鹰, 董建军, 袁铮, 刘慎业, 江少恩, 丁永坤 2011 物理学报 60 045212Google Scholar
Cao Z R, Zhang H Y, Dong J J, Yuan Z, Miao W Y, Liu S Y, Jiang S E, Ding Y K 2011 Acta Phys. Sin. 60 045212Google Scholar
[14] Glenzer S H, Lee H J, Davis P, Doppner T, Falcone R W, Fortmann C, Hanmmel B A, Kritcher A L, Landen O L, Lee R W, Munro D H, Redmer R 2010 High Energy Density Phys. 6 1Google Scholar
[15] Fahad M, Ali S, Iqbal Y 2019 Plasma Sci. Technol. 21 2058
[16] Azechi H, Shiraga H, Miyanaga N, Nishimura H 1997 Fusion Eng. Des. 34−35 37
[17] Borghesi M 2002 Phys. Plasma 9 2214Google Scholar
[18] Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J 2006 Phys. Rev. Lett. 97 135003Google Scholar
[19] Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301Google Scholar
[20] Li C K, Seguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001Google Scholar
[21] Patel P K, Mackinnon A J, Key M H, Cowan T E, Stephens R 2003 Phys. Rev. Lett. 91 125004Google Scholar
[22] 马文君, 刘志鹏, 王鹏业, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar
Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar
[23] Zhu P, Zhang Z, Chen L, Zheng J, Li R, Wang W, Li J, Wang X, Cao J, Qian D 2010 Appl. Phys. Lett. 97 155
[24] Chen L, Li R, Chen J, Zhu P, Liu F, Cao J, Sheng Z, Zhang J 2016 Proc. Natl. Acad. Sci. U.S.A. 112 47
[25] Du B, Cai H B, Zhang W S, Wang X F, Zhu S P 2021 Matter Radiat. Extrem. 6 035903Google Scholar
计量
- 文章访问数: 3748
- PDF下载量: 59
- 被引次数: 0