-
In this paper, chaotic parallel synchronization and quasi-periodic parallel synchronization between two mutually coupled different semiconductor lasers and other lasers are studied, and the regeneration of chaotic laser and key technology of repeater are discussed. The complex dynamic system and network of laser parallel series are presented in mathematics and in physics, and the network topology diagram and optics path are specified. A mathematical-physical model is given to study how to obtain parallel synchronization via the coupled driving nonlinear equations. The operating principle of the repeater is put forward for chaotic secure communication, and the channel equation of repeater is established because the laser chaotic behavior is extremely sensitive to external influences and system parameter changes. The laser’s chaotically regenerating and transmitting is successfully realized via two sets of repeaters. The chaotic encoding communication with repeaters is successfully completed while the encoding information signal is accurately extracted from the chaotic carrier by a filter and calculating the synchronous difference. We adopt three sets of lasers as a research case to simulate and verify the theory of laser parallel series network we put forward to fit perfectly the obtained numerical results. We study the parameter mismatch problem of the system, where the synchronous difference is numerically calculated by varying some parameters of the lasers. In the case of smaller parameter mismatch, the system has a highly synchronous capability to a certain degree. This is a novel laser chaotic encoding network in chaotic secure communication and characterizes the core technical elements of the repeater. The laser transmitter has four nonlinear interaction variables, where the nonlinear interaction between the amplitude and phase of the two optical fields results in highly nonlinear dynamics. The system has the characteristics of high nonlinearity, multi-variable, high-dimension, and multi-key. So it is highly secure and not easy to crack. The results have an important reference value for the chaos applications in remote secure communication, optical network and laser technology.
-
Keywords:
- chaos /
- synchronization /
- laser /
- network
[1] Bayati B M A, Ahmad K A, Naimee M A 2018 J. Opt. Soc. Am. B 35 918Google Scholar
[2] Kang Z, Sun J, Ma L, Qi Y, Jian S 2014 IEEE J. Quantum Electron. 50 148Google Scholar
[3] 王顺天, 吴正茂, 吴加贵, 周立, 夏光琼 2015 物理学报 64 154205Google Scholar
Wang S T, Wu Z M, Wu J G, Zhou L, Xia G Q 2015 Acta Phys. Sin. 64 154205Google Scholar
[4] 钟东洲, 邓涛, 郑国梁 2015 物理学报 63 070504Google Scholar
Zhong D Z, Deng T, Zheng G L 2015 Acta Phys. Sin. 63 070504Google Scholar
[5] Mulet J, Masoller C, Mirasso C R 2002 Phys. Rev. A 65 063815Google Scholar
[6] Erzgräbera D, Lenstraa D, Krauskopfc B 2006 Proc. SPIE 6184 618407Google Scholar
[7] Arroyo-Almanza D A, Pisarchik A N, Fischer I, Mirasso C R, Soriano M C 2013 Opt. Commun. 301 67
[8] Erzgräber H, Wieczorek S 2009 Phys. Rev. E 80 026212Google Scholar
[9] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 物理学报 64 024209Google Scholar
Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209Google Scholar
[10] Wunsche H J, Bauer S, Kreissl J, Ushakov O, Korneyev N, Henneberger F, Wille E, Erzgräber H, Peil M, Elsaor W, Fischer I 2005 Phys. Rev. Lett. 94 163901Google Scholar
[11] Mulet J, Mirasso C R, Heil T, Fischer I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 97Google Scholar
[12] Hill M T, Waardt H D, Dorren H J S 2001 IEEE J. Quantum Electron. 37 405Google Scholar
[13] Tang X, Wu Z M, Wu J G, Deng T, Fan L, Zhong Z Q, Chen J J, Xia G Q 2015 Laser Phys. Lett. 12 015003Google Scholar
[14] Quirce A, Valle A, Thienpont H, Panajotov K 2016 J. Opt. Soc. Am. B 33 90Google Scholar
[15] Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 J. Opt. Soc. Am. B 24 1276
[16] Hong Y H 2015 IEEE J. Select. Topics Quantum Electron. 21 1801007
[17] Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144Google Scholar
[18] 李增, 冯玉玲, 王晓茜, 姚治海 2018 物理学报 67 140501Google Scholar
Li Z, Feng Y L, Wang X Q, Yao Z H 2018 Acta Phys. Sin. 67 140501Google Scholar
[19] 张浩, 郭星星, 项水英 2018 物理学报 67 204202Google Scholar
Zhang H, Guo X X, Xiang S Y 2018 Acta Phys. Sin. 67 204202Google Scholar
[20] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619Google Scholar
[21] Wu J, Wu Z, Liu Y, Fan L, Tang X, Xia G 2013 IEEE/OSA J. Lightwave Technol. 31 461Google Scholar
[22] 穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰 2015 物理学报 64 124206Google Scholar
Mu P H, Pan W, Li N Q, Yan L S, Luo B, Zou X H, Xu M F 2015 Acta Phys. Sin. 64 124206Google Scholar
[23] Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072Google Scholar
-
表 1 激光器参量
Table 1. Laser parameters.
参量 值 参量 值 腔长L/ μm 350 俄歇复合因子C/ cm6·s–1 3.5 × 10–29 腔宽w/ μm 2 饱和光子场振幅|Es| / m–3/2 1.6619 × 1011 腔厚d/ μm 0.15 增益常数α/ cm2 2.3 × 10–16 压缩和限制因子Γ 0.29 光线宽增强因子βc 6 群速度折射率ng 3.8 耦合驱动系数k 0.1 光子损耗系数αm/ cm–1 49 频率ω/ Rad·s–1 1438 × 1012 非辐射复合速率Anr/ s–1 1.0 × 108 激光透明时
载流子密度nth/ cm–31.2 × 1018 辐射复合因子B/ cm3·s–1 1.2 × 10–10 -
[1] Bayati B M A, Ahmad K A, Naimee M A 2018 J. Opt. Soc. Am. B 35 918Google Scholar
[2] Kang Z, Sun J, Ma L, Qi Y, Jian S 2014 IEEE J. Quantum Electron. 50 148Google Scholar
[3] 王顺天, 吴正茂, 吴加贵, 周立, 夏光琼 2015 物理学报 64 154205Google Scholar
Wang S T, Wu Z M, Wu J G, Zhou L, Xia G Q 2015 Acta Phys. Sin. 64 154205Google Scholar
[4] 钟东洲, 邓涛, 郑国梁 2015 物理学报 63 070504Google Scholar
Zhong D Z, Deng T, Zheng G L 2015 Acta Phys. Sin. 63 070504Google Scholar
[5] Mulet J, Masoller C, Mirasso C R 2002 Phys. Rev. A 65 063815Google Scholar
[6] Erzgräbera D, Lenstraa D, Krauskopfc B 2006 Proc. SPIE 6184 618407Google Scholar
[7] Arroyo-Almanza D A, Pisarchik A N, Fischer I, Mirasso C R, Soriano M C 2013 Opt. Commun. 301 67
[8] Erzgräber H, Wieczorek S 2009 Phys. Rev. E 80 026212Google Scholar
[9] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 物理学报 64 024209Google Scholar
Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209Google Scholar
[10] Wunsche H J, Bauer S, Kreissl J, Ushakov O, Korneyev N, Henneberger F, Wille E, Erzgräber H, Peil M, Elsaor W, Fischer I 2005 Phys. Rev. Lett. 94 163901Google Scholar
[11] Mulet J, Mirasso C R, Heil T, Fischer I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 97Google Scholar
[12] Hill M T, Waardt H D, Dorren H J S 2001 IEEE J. Quantum Electron. 37 405Google Scholar
[13] Tang X, Wu Z M, Wu J G, Deng T, Fan L, Zhong Z Q, Chen J J, Xia G Q 2015 Laser Phys. Lett. 12 015003Google Scholar
[14] Quirce A, Valle A, Thienpont H, Panajotov K 2016 J. Opt. Soc. Am. B 33 90Google Scholar
[15] Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 J. Opt. Soc. Am. B 24 1276
[16] Hong Y H 2015 IEEE J. Select. Topics Quantum Electron. 21 1801007
[17] Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144Google Scholar
[18] 李增, 冯玉玲, 王晓茜, 姚治海 2018 物理学报 67 140501Google Scholar
Li Z, Feng Y L, Wang X Q, Yao Z H 2018 Acta Phys. Sin. 67 140501Google Scholar
[19] 张浩, 郭星星, 项水英 2018 物理学报 67 204202Google Scholar
Zhang H, Guo X X, Xiang S Y 2018 Acta Phys. Sin. 67 204202Google Scholar
[20] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619Google Scholar
[21] Wu J, Wu Z, Liu Y, Fan L, Tang X, Xia G 2013 IEEE/OSA J. Lightwave Technol. 31 461Google Scholar
[22] 穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰 2015 物理学报 64 124206Google Scholar
Mu P H, Pan W, Li N Q, Yan L S, Luo B, Zou X H, Xu M F 2015 Acta Phys. Sin. 64 124206Google Scholar
[23] Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072Google Scholar
计量
- 文章访问数: 7784
- PDF下载量: 76
- 被引次数: 0