搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多激光束驱动准单能高能质子束模拟研究

王辉林 廖艳林 赵艳 章文 谌正艮

引用本文:
Citation:

基于多激光束驱动准单能高能质子束模拟研究

王辉林, 廖艳林, 赵艳, 章文, 谌正艮

Simulation study of quasi-monoenergetic high-energy proton beam based on multiple laser beams driving

Wang Hui-Lin, Liao Yan-Lin, Zhao Yan, Zhang Wen, Chen Zheng-Gen
PDF
HTML
导出引用
  • 受激光强度制约, 单束激光驱动下质子束能量难以提升. 本文提出一种多束超短强激光掠入射微带靶两侧驱动质子加速新方法. 两束激光驱动设置下, 可获得能散度约3%、能量约165 MeV的质子束. 二维粒子模拟显示, 激光在固体靶两侧提取大量准直性高能电子电荷并注入靶后方, 在靶后方自行建立纵向聚束场驱动质子加速和聚束, 形成准单能高能质子束. 研究还表明, 利用四束超短强激光掠入射微带靶两侧, 可获得能散度约2%、能量约250 MeV的质子束. 多激光束驱动质子加速机制为质子束能量提升提供了新的思路, 准单能高能质子束有望在医学治疗领域得到应用.
    High-energy proton beams have extensive and important applications. Traditional proton accelerators are bulky and costly. The high-power laser pulse technology provides a new proton acceleration scheme based on the interaction between laser and plasma, and has the advantage of miniaturization. Furthermore, comparing with traditional proton accelerators, the proton acceleration gradient by high-power laser pulses can be increased by three orders of magnitude. The proton beams with high brightness, narrow pulse width, and good directionality can be generated in theory within a very small effective size, and they are suitable for fields such as nuclear physics and particle physics, ion beam fast ignition, medical treatment, and proton beam detection. In order to realize laser proton acceleration, a great many of researches of different target configurations and acceleration mechanisms have been reported on proton acceleration driven by ultrashort and high-power lasers. However, owing to the limitation of laser intensity, the energy of proton beam driven by a single-beam laser is difficult to improve to meet the needs of medical applications. In this paper, a new method of driving proton acceleration by multiple ultrashort high-power lasers with grazing incidence on both sides of the microstrip target is proposed. A proton beam with an energy divergence of about 3% and energy of about 165 MeV can be obtained by using the two-beam driving setting. The results of two-dimensional particle-in-cell simulation show that a large number of collimated high-energy electron charges are extracted from both sides of the solid target by laser and injected into the back of the target. A longitudinal bunching field is established on the back of the target, which drives protons to accelerate and bunch to form a quasi-monoenergetic high-energy proton beam. The research also shows that the proton beam with an energy divergence of about 2% and energy of about 250 MeV can be obtained by using four grazing ultrashort high-power lasers on both sides of the microstrip target. The mechanism of multi-laser beams driving proton acceleration provides a new idea for the energy enhancement of the proton beam, and the quasi-monoenergetic high-energy proton beam is expected to be applied to the field of medical treatment.
      通信作者: 廖艳林, liaoyl@ahu.edu.cn ; 赵艳, zhaoyan@ahmu.edu.cn
    • 基金项目: 安徽省自然科学基金(批准号: 2008085MF221, 1908085MF198) 资助的课题.
      Corresponding author: Liao Yan-Lin, liaoyl@ahu.edu.cn ; Zhao Yan, zhaoyan@ahmu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant Nos. 2008085MF221, 1908085MF198).
    [1]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar

    [2]

    马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

    [3]

    Ledingham K W D, McKenna P, Singhal R P 2003 Science 300 1107Google Scholar

    [4]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar

    [5]

    Ruhl H, Cowan T, Dahlburg J, Parks P, Stephens R 2004 Nucl. Fusion 44 438Google Scholar

    [6]

    Hegelich B M, Jung D, Albright B J, Fernandez J C, Gautier D C, Huang C, Kwan T J, Letzring S, Palaniyappan S, Shah R C, Wu H C, Yin L, Henig A, Hörlein R, Kiefer D, Schreiber J, Yan X Q, Tajima T, Habs D, Dromey B, Honrubia J J 2011 Nucl. Fusion 51 083011Google Scholar

    [7]

    Linz U, Alonso J 2016 Phys. Rev. Accel. Beams 19 124802Google Scholar

    [8]

    Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240Google Scholar

    [9]

    李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明 2019 物理学报68 155201Google Scholar

    Li Y J, Yue D N, Deng Y Q, Zhao X, Wei W Q, Ge X L, Yuan X H, Liu F, Chen L M 2019 Acta Phys. Sin. 68 155201Google Scholar

    [10]

    Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001Google Scholar

    [11]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar

    [12]

    Hegelich M, Karsch S, Pretzler G, Habs D, Witte K, Guenther W, Allen M, Blazevic A, Fuchs J, Gauthier J C, Geissel M, Audebert P, Cowan T, Roth M 2002 Phys. Rev. Lett. 89 085002Google Scholar

    [13]

    Allen M, Patel P K, Mackinnon A, Price D, Wilks S, Morse E 2004 Phys. Rev. Lett. 93 265004Google Scholar

    [14]

    Dover N P, Nishiuchi M, Sakaki H, Kondo K, Alkhimova M A, Faenov A Y, Hata M, Iwata N, Kiriyama H, Koga J K, Miyahara T, Pikuz T A, Pirozhkov A S, Sagisaka A, Sentoku Y, Watanabe Y, Kando M, Kondo K 2020 Phys. Rev. Lett. 124 084802Google Scholar

    [15]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003Google Scholar

    [16]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002Google Scholar

    [17]

    Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002Google Scholar

    [18]

    Wan Y, Andriyash I A, Lu W, Mori W B, Malka V 2020 Phys. Rev. Lett. 125 104801Google Scholar

    [19]

    Nakatsutsumi M, Sentoku Y, Korzhimanov A, Chen S N, Buffechoux S, Kon A, Atherton B, Audebert P, Geissel M, Hurd L, Kimmel M, Rambo P, Schollmeier M, Schwarz J, Starodubtsev M, Gremillet L, Kodama R, Fuchs J 2018 Nat. Commun. 9 280Google Scholar

    [20]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stöhlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002Google Scholar

    [21]

    Higginson A, Gray R J, King M, Dance R J, Williamson S D R, Butler N M H, Wilson R, Capdessus R, Armstrong C, Green J S, Hawkes S J, Martin P, Wei W Q, Mirfayzi S R, Yuan X H, Kar S, Borghesi M, Clarke R J, Neely D, McKenna P 2018 Nat. Commun. 9 724Google Scholar

    [22]

    Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T 2006 Nature 439 445Google Scholar

    [23]

    Xu Y X, Wang J X, Qi X, Li M, Xing Y F, Yang L, Zhu W J 2017 Phys. Plasmas 24 033108Google Scholar

    [24]

    Zou D B, Yu D Y, Jiang X R, Yu M Y, Chen Z Y, Deng Z G, Yu T P, Yin Y, Shao F Q, Zhuo H B, Zhou C T, Ruan S C 2019 Phys. Plasmas 26 123105Google Scholar

    [25]

    Liu P, Qu J F, Liu X Y, Li X F, Cai L, Tang J Y, Kong Q 2020 Phys. Rev. Accel. Beams 23 011303Google Scholar

    [26]

    Shen X F, Qiao B, Zhang H, Xie Y, Kar S, Borghesi M, Zepf M, Zhou C T, Zhu S P, He X T 2019 Appl. Phys. Lett. 114 144102Google Scholar

    [27]

    Zhang X M, Shen B F, Ji L L, Wang F C, Wen M, Wang W P, Xu J C, Yu Y H 2010 Phys. Plasmas 17 123102Google Scholar

    [28]

    Ma W J, Kim I J, Yu J Q, Choi I W, Singh P K, Lee H W, Sung J H, Lee S K, Lin C, Liao Q, Zhu J G, Lu H Y, Liu B, Wang H Y, Xu R F, He X T, Chen J E, Zepf M, Schreiber J, Yan X Q, Nam C H 2019 Phys. Rev. Lett. 122 014803Google Scholar

    [29]

    Arber T D, Bennett K, Brady C S, Lawrence D A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Phys. Contr. F. 57 113001Google Scholar

    [30]

    Perelomov A M, Popov V S, Terentev M V 1966 Sov. Phys. JETP 23 924

    [31]

    Perelomov A M, Popov V S, Terentev M V 1967 Sov. Phys. JETP 24 207

    [32]

    Cantono G, Sgattoni A, Fedeli L, Garzella D, Réau F, Riconda C, Macchi A, Ceccotti T 2018 Phys. Plasmas 25 031907Google Scholar

    [33]

    Shen X F, Pukhov A, Qiao B 2021 Phys. Rev. X 11 041002Google Scholar

    [34]

    Sarma J, McIlvenny A, Das N, Borghesi M, Macchi A 2022 New J. Phys. 24 073023Google Scholar

    [35]

    Marini S, Kleij P S, Pisani F, Amiranoff F, Grech M, Macchi A, Raynaud M, Riconda C 2021 Phys. Rev. E 103 L021201Google Scholar

  • 图 1  飞秒激光脉冲与微带靶相互作用示意图

    Fig. 1.  Schematic diagram of interaction between femtosecond laser pulse and microstrip target.

    图 2  $ {84 T}_{0} $时刻的二维PIC模拟结果和电子能谱分布 (a) 电子密度谱; (b) 纵向场$ {E}_{{\rm{s}}{\rm{p}}} $的分布; (c) 横向场$ {E}_{y} $的分布; (d) 平均自生磁场$ {B}_{z} $的分布; (e) $ {40 T}_{0} $, $ {70 T}_{0} $, $ {105 T}_{0} $时刻的电子能谱

    Fig. 2.  Two-dimensional PIC simulation results at $ {84 T}_{0} $ and the distribution of electron energy spectrum: (a) Electron density spectrum; (b) distribution of longitudinal electric field $ {E}_{{\rm{s}}{\rm{p}}} $; (c) distribution of transverse electric field $ {E}_{y} $; (d) distribution of the averaged self-generated magnetic field $ {B}_{z} $; (e) electron energy spectra at $ {40 T}_{0} $, $ {70 T}_{0} $, and $ {105 T}_{0} $.

    图 3  靶后粒子密度分布、靶后纵向聚束场和质子束能谱分布 (a) $ {144 T}_{0} $时刻电子密度谱; (b) $ {144 T}_{0} $时刻质子密度谱; (c) $ {144 T}_{0} $时刻靶后纵向场$ {E}_{x} $的分布; (d) $ {128 T}_{0} $, $ {145 T}_{0} $, $ {171 T}_{0} $时刻的质子能谱

    Fig. 3.  Particle density distribution and longitudinal focusing field behind the target and proton beam energy spectrum distribution: (a) Electron density spectrum at $ {144 T}_{0} $; (b) proton density spectrum at $ {144 T}_{0} $; (c) distribution of longitudinal field $ {E}_{x} $ at $ {144 T}_{0} $; (d) proton energy spectra at $ {128 T}_{0} $, $ {145 T}_{0} $, and $ {171 T}_{0} $.

    图 4  四束飞秒激光脉冲与微带靶相互作用示意图和二维PIC模拟结果 (a) 四束激光分别以10°、15° 掠入射平面固体靶; (b) 黑线为四束激光靶后纵向聚束场, 红色虚线为两束激光靶后纵向聚束场; (c) 横向场$ {E}_{y} $的分布; (d) 黑线为四束激光质子截止能量, 红色虚线为两束激光质子截止能量

    Fig. 4.  Schematic diagram of the interaction between four femtosecond laser pulses and a microstrip target and two-dimensional PIC simulation results: (a) Four laser beams are incident on the solid target at grazing angles of 10° and 15°, respectively; (b) the black line shows the longitudinal focusing field behind the target for four laser beams, and the red dashed line shows the longitudinal focusing field behind the target for two laser beams; (c) distribution of transverse electric field $ {E}_{y} $; (d) the black curve shows the proton cutoff energy for four laser beams, and the red dashed curve shows the proton cutoff energy for two laser beams.

  • [1]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar

    [2]

    马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

    [3]

    Ledingham K W D, McKenna P, Singhal R P 2003 Science 300 1107Google Scholar

    [4]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar

    [5]

    Ruhl H, Cowan T, Dahlburg J, Parks P, Stephens R 2004 Nucl. Fusion 44 438Google Scholar

    [6]

    Hegelich B M, Jung D, Albright B J, Fernandez J C, Gautier D C, Huang C, Kwan T J, Letzring S, Palaniyappan S, Shah R C, Wu H C, Yin L, Henig A, Hörlein R, Kiefer D, Schreiber J, Yan X Q, Tajima T, Habs D, Dromey B, Honrubia J J 2011 Nucl. Fusion 51 083011Google Scholar

    [7]

    Linz U, Alonso J 2016 Phys. Rev. Accel. Beams 19 124802Google Scholar

    [8]

    Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240Google Scholar

    [9]

    李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明 2019 物理学报68 155201Google Scholar

    Li Y J, Yue D N, Deng Y Q, Zhao X, Wei W Q, Ge X L, Yuan X H, Liu F, Chen L M 2019 Acta Phys. Sin. 68 155201Google Scholar

    [10]

    Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001Google Scholar

    [11]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar

    [12]

    Hegelich M, Karsch S, Pretzler G, Habs D, Witte K, Guenther W, Allen M, Blazevic A, Fuchs J, Gauthier J C, Geissel M, Audebert P, Cowan T, Roth M 2002 Phys. Rev. Lett. 89 085002Google Scholar

    [13]

    Allen M, Patel P K, Mackinnon A, Price D, Wilks S, Morse E 2004 Phys. Rev. Lett. 93 265004Google Scholar

    [14]

    Dover N P, Nishiuchi M, Sakaki H, Kondo K, Alkhimova M A, Faenov A Y, Hata M, Iwata N, Kiriyama H, Koga J K, Miyahara T, Pikuz T A, Pirozhkov A S, Sagisaka A, Sentoku Y, Watanabe Y, Kando M, Kondo K 2020 Phys. Rev. Lett. 124 084802Google Scholar

    [15]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003Google Scholar

    [16]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002Google Scholar

    [17]

    Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002Google Scholar

    [18]

    Wan Y, Andriyash I A, Lu W, Mori W B, Malka V 2020 Phys. Rev. Lett. 125 104801Google Scholar

    [19]

    Nakatsutsumi M, Sentoku Y, Korzhimanov A, Chen S N, Buffechoux S, Kon A, Atherton B, Audebert P, Geissel M, Hurd L, Kimmel M, Rambo P, Schollmeier M, Schwarz J, Starodubtsev M, Gremillet L, Kodama R, Fuchs J 2018 Nat. Commun. 9 280Google Scholar

    [20]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stöhlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002Google Scholar

    [21]

    Higginson A, Gray R J, King M, Dance R J, Williamson S D R, Butler N M H, Wilson R, Capdessus R, Armstrong C, Green J S, Hawkes S J, Martin P, Wei W Q, Mirfayzi S R, Yuan X H, Kar S, Borghesi M, Clarke R J, Neely D, McKenna P 2018 Nat. Commun. 9 724Google Scholar

    [22]

    Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T 2006 Nature 439 445Google Scholar

    [23]

    Xu Y X, Wang J X, Qi X, Li M, Xing Y F, Yang L, Zhu W J 2017 Phys. Plasmas 24 033108Google Scholar

    [24]

    Zou D B, Yu D Y, Jiang X R, Yu M Y, Chen Z Y, Deng Z G, Yu T P, Yin Y, Shao F Q, Zhuo H B, Zhou C T, Ruan S C 2019 Phys. Plasmas 26 123105Google Scholar

    [25]

    Liu P, Qu J F, Liu X Y, Li X F, Cai L, Tang J Y, Kong Q 2020 Phys. Rev. Accel. Beams 23 011303Google Scholar

    [26]

    Shen X F, Qiao B, Zhang H, Xie Y, Kar S, Borghesi M, Zepf M, Zhou C T, Zhu S P, He X T 2019 Appl. Phys. Lett. 114 144102Google Scholar

    [27]

    Zhang X M, Shen B F, Ji L L, Wang F C, Wen M, Wang W P, Xu J C, Yu Y H 2010 Phys. Plasmas 17 123102Google Scholar

    [28]

    Ma W J, Kim I J, Yu J Q, Choi I W, Singh P K, Lee H W, Sung J H, Lee S K, Lin C, Liao Q, Zhu J G, Lu H Y, Liu B, Wang H Y, Xu R F, He X T, Chen J E, Zepf M, Schreiber J, Yan X Q, Nam C H 2019 Phys. Rev. Lett. 122 014803Google Scholar

    [29]

    Arber T D, Bennett K, Brady C S, Lawrence D A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Phys. Contr. F. 57 113001Google Scholar

    [30]

    Perelomov A M, Popov V S, Terentev M V 1966 Sov. Phys. JETP 23 924

    [31]

    Perelomov A M, Popov V S, Terentev M V 1967 Sov. Phys. JETP 24 207

    [32]

    Cantono G, Sgattoni A, Fedeli L, Garzella D, Réau F, Riconda C, Macchi A, Ceccotti T 2018 Phys. Plasmas 25 031907Google Scholar

    [33]

    Shen X F, Pukhov A, Qiao B 2021 Phys. Rev. X 11 041002Google Scholar

    [34]

    Sarma J, McIlvenny A, Das N, Borghesi M, Macchi A 2022 New J. Phys. 24 073023Google Scholar

    [35]

    Marini S, Kleij P S, Pisani F, Amiranoff F, Grech M, Macchi A, Raynaud M, Riconda C 2021 Phys. Rev. E 103 L021201Google Scholar

  • [1] 张振驰, 唐桧波, 王金灿, 佀化冲, 王志, 蓝翔, 胡广月. 背景气体对激光等离子体和外磁场界面上槽纹不稳定性的影响. 物理学报, 2023, 72(22): 225201. doi: 10.7498/aps.72.20231108
    [2] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [3] 李天成, 章晓海, 盛正卯. 激光入射双层等离子体靶产生的表面等离子体波及应用. 物理学报, 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [4] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈. 物理学报, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [5] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [6] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟. 物理学报, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [7] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术. 物理学报, 2017, 66(20): 205201. doi: 10.7498/aps.66.205201
    [8] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [9] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [10] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [11] 纪运景, 卞保民, 童朝霞, 陆 建. 靶材偏置低电压对激光等离子体诱导靶上电势信号的影响. 物理学报, 2008, 57(2): 980-984. doi: 10.7498/aps.57.980
    [12] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [13] 张秋菊, 盛政明, 王兴海, 满宝元, 苍 宇, 张 杰. 相位反射产生的激光场空洞现象及其与激光等离子体参数相关性研究. 物理学报, 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [14] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [15] 郑志远, 鲁 欣, 张 杰, 郝作强, 远晓辉, 王兆华. 激光等离子体动量转换效率的实验研究. 物理学报, 2005, 54(1): 192-196. doi: 10.7498/aps.54.192
    [16] 张秋菊, 盛政明, 苍 宇, 张 杰. 激光脉冲诱导的等离子体密度调制及其产生的相位反射. 物理学报, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [17] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [18] 杨家敏, 丁耀南, 陈 波, 郑志坚, 杨国洪, 张保汉, 王耀梅, 张文海. 等电子法测量小能量激光打靶等离子体电子温度. 物理学报, 2003, 52(2): 411-414. doi: 10.7498/aps.52.411
    [19] 王薇, 张杰, V.K.Senecha. 对激光等离子体中X射线的产生与辐射加热研究. 物理学报, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  2393
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-07-05
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-09-20

/

返回文章
返回