搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

背景气体对激光等离子体和外磁场界面上槽纹不稳定性的影响

张振驰 唐桧波 王金灿 佀化冲 王志 蓝翔 胡广月

引用本文:
Citation:

背景气体对激光等离子体和外磁场界面上槽纹不稳定性的影响

张振驰, 唐桧波, 王金灿, 佀化冲, 王志, 蓝翔, 胡广月

Influence of background gas on flute instability produced at interface between laser plasma and external magnetic field

Zhang Zhen-Chi, Tang Hui-Bo, Wang Jin-Can, Si Hua-Chong, Wang Zhi, Lan Xiang, Hu Guang-Yue
PDF
HTML
导出引用
  • 等离子体在外磁场中膨胀产生的抗磁腔和不稳定性是空间物理和聚变物理中的重要现象. 本文实验研究了激光产生的等离子体在外磁场中膨胀时在抗磁腔表面产生的槽纹不稳定性, 数据分析显示实验中观察到的不稳定性属于大拉莫尔半径槽纹不稳定性. 实验发现充入稀薄背景气体能够显著抑制槽纹不稳定性的发展, 背景气体气压超过50 Pa时(约为抗磁腔表面等离子体密度的1%), 槽纹不稳定性几乎被完全抑制. 动理学分析表明离子-离子碰撞是抑制不稳定性发展的主要因素. 这些结果对磁场辅助激光聚变和爆炸空间物理现象等领域有重要参考价值.
    Diamagnetic cavity and flute instability generated by plasma expansion in an external magnetic field are important phenomena in space and fusion physics. We use a nanosecond laser irradiated carbon planar target to generate plasma, and the plasma expands in a 7 T transverse pulsed magnetic field to produce diamagnetic cavity. The flute instabilities formed on the surface of the diamagnetic cavity are explored experimentally. Data analysis shows that, under our experimental parameters, the gyroradius of electron ($ {\rho }_{{\rm{e}}} $) is much smaller than the density gradient scale length of the diamagnetic cavity ($ {L}_{{\rm{n}}} $), while the ion’s gyroradius ($ {\rho }_{{\rm{i}}} $) is much larger than $ {L}_{{\rm{n}}} $, indicating that the electrons are magnetized while the ions are not. The relative drift between electrons and ions provides free energy for developing the flute instability, which is composed of gravity drift and diamagnetic drift. The calculation shows that the gravity drift velocity is much larger than the diamagnetic drift velocity in our experiment, so the instability belongs to the large Larmor radius instability. By filling the target chamber with rarefied helium ambient gas, we find that the flute instabilities are inhibited significantly. When the ambient gas pressure exceeds 50 Pa (about 1% of the interface plasma density of diamagnetic cavity), the flute instabilities are almost completely suppressed. Kinetic analyses show that ion-ion collision and electron-ion collision, especially the former, are the main effects that inhibit the development of instability. Our results are of benefit to laser fusion and address the fundamental question of explored space phenomena.
      通信作者: 唐桧波, tanghb@ustc.edu.cn ; 胡广月, gyhu@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175230, 11775223, 12205298)、中国科学院战略先导专项项目(批准号: XDB16)和中央高校基本科研业务费专项资金资助的课题.
      Corresponding author: Tang Hui-Bo, tanghb@ustc.edu.cn ; Hu Guang-Yue, gyhu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175230, 11775223, 12205298), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB16), and the Fundamental Research Funds for the Central Universities of China.
    [1]

    Lühr H, Klöcker N, Acuña M H 1988 Adv. Space Res. 8 11

    [2]

    Bernhardt P A 1992 Phys. Fluids B 4 2249Google Scholar

    [3]

    Valenzuela A, Haerendel G, Föppl H, Melzner F, Neuss H, Rieger E, Stöcker J, Bauer O, Höfner H, Loidl J 1986 Nature 320 700Google Scholar

    [4]

    Bernhardt P A, Roussel-Dupre R A, Pongratz M B, Haerendel G, Valenzuela A, Gurnett D A, Anderson R R 1987 J. Geophys. Res. Space Phys. 92 5777Google Scholar

    [5]

    Dimonte G, Wiley L G 1991 Phys. Rev. Lett. 67 1755Google Scholar

    [6]

    Peyser T A, Manka C K, Ripin B H, Ganguli G 1992 Phys. Fluids B 4 2448Google Scholar

    [7]

    Collette A, Gekelman W 2011 Phys. Plasmas 18 055705Google Scholar

    [8]

    Zakharov Y P 2002 Adv. Space. Res. 29 1335Google Scholar

    [9]

    Yao W P, Capitaine J, Khiar B, Vinci T, Burdonov K, Béard J, Fuchs J, Ciardi A 2022 Matter Radiat. Extremes 7 026903Google Scholar

    [10]

    Plechaty C, Presura R, Esaulov A A 2013 Phys. Rev. Lett. 111 185002Google Scholar

    [11]

    Ripin B H, McLean E A, Manka C K, Pawley C, Stamper J A, Peyser T A, Mostovych A N, Grun J, Hassam A B, Huba J D 1987 Phys. Rev. Lett. 59 2299Google Scholar

    [12]

    Brecht S H, Gladd N T 1992 IEEE Trans. Plasma Sci. 20 678Google Scholar

    [13]

    Tang H B, Hu G Y, Liang Y H, Wang Y L, Tao T, Hu P, Yuan P, Zhu P, Zuo Y, Zhao B, Zheng J 2020 Phys. Plasmas 27 022108Google Scholar

    [14]

    Tang H B, Hu G Y, Liang Y H, Tao T, Wang Y L, Hu P, Zhao B, Zheng J 2018 Plasma Phys. Controlled Fusion 60 055005Google Scholar

    [15]

    Hu P, Zhao J Y, Wang J C, Zhang Z C, Tang H B, Hu G Y 2022 J. Instrum. 17 P07036Google Scholar

    [16]

    Wang Y L, Hu G Y, Hu P, Liang Y H, Yuan P, Zheng J 2019 Rev. Sci. Instrum. 90 075108Google Scholar

    [17]

    Hu P, Hu G Y, Wang Y L, Tang H B, Zhang Z C, Zheng J 2020 Rev. Sci. Instrum. 91 014703Google Scholar

    [18]

    Hassam A B, Huba J D 1987 Geophys. Res. Lett. 14 60Google Scholar

    [19]

    Gisler G, Lemons D S 1989 J. Geophys. Res. Space Phys. 94 10145Google Scholar

    [20]

    Winske D 1988 J. Geophys. Res. Space Phys. 93 2539Google Scholar

    [21]

    Huba J D, Hassam A B, Winske D 1990 Phys. Fluids B 2 1676Google Scholar

    [22]

    Ali A W, McLean E A 1985 J. Quant. Spectrosc. Radiat. Transfer 33 381Google Scholar

    [23]

    Fiuza F, Swadling G F, Grassi A, et al. 2020 Nat. Phys. 16 916Google Scholar

  • 图 1  实验设置

    Fig. 1.  Experimental setup.

    图 2  飞秒激光干涉测量的不同背景气压下碳等离子体在20 ns时刻形成的抗磁腔和槽纹不稳定性 (a) 真空背景(0.01 Pa); (b)—(l) 背景气体气压从10—800 Pa变化. 虚线位置为初始靶位, 其左侧是从干涉条纹图解相位时产生的无效数据

    Fig. 2.  Structures of diamagnetic cavity and flute instability at 20 ns after laser ablation measured by femtosecond laser optical interferometry: (a) Vacuum ambient at 0.01 Pa; (b)–(l) ambient helium gas with pressure from 10–800 Pa. The left side of dotted line (the target surface) is invalid data generated by the process of phase unwrapping from interferogram fringes.

    图 3  不稳定性结构图2(a)(e)的局部放大图

    Fig. 3.  Enlarged views of the flute instability of Fig. 2(a)-(e).

    图 4  不稳定性结构的振幅和波长随气压的变化

    Fig. 4.  Amplitude and wavelength of instability structure vs. ambient gas pressure.

    图 5  抗磁腔尺寸和射流长度随气压的变化

    Fig. 5.  Diamagnetic cavity size and jet length vs. ambient gas pressure.

    图 6  抗磁腔两侧电子密度随气压的变化

    Fig. 6.  Lined integrated electron density at the surface of the diamagnetic cavity vs. ambient gas pressure.

    图 7  密度梯度标长随气压的变化. 认为等离子体为球形膨胀, 选取打靶点为球心, 从 θ = 40°, 50°, 60°, 70°四个角度测量梯度标长

    Fig. 7.  Density gradient scale length at the surface of diamagnetic cavity vs. ambient gas pressure. Considering that the plasma expands spherically around the laser irradiated target, the gradient scale lengths are measured at four angles of θ = 40°, 50°, 60°, 70°.

    图 8  不同气压时的不稳定性色散曲线, 实线同时包含离子-离子碰撞项和电子-离子碰撞项 (a) 虚线仅包含离子-离子碰撞; (b) 虚线仅包含电子-离子碰撞

    Fig. 8.  Instability dispersion curves at different gas pressures, the solid lines include both ion-ion and electron-ion collision effect: (a) Dashed lines include only the ion-ion collision; (b) dashed lines include only the electron-ion collision.

    图 9  计算的不同气压时的不稳定性增长, 实线同时包含了离子-离子碰撞项和电子-离子碰撞项 (a) 虚线仅包含离子-离子碰撞项; (b) 虚线仅包含电子-离子碰撞

    Fig. 9.  Growth rates calculated at various gas pressure, the solid lines include both ion-ion and electron-ion collision effect: (a) Dashed lines include only the ion-ion collision; (b) dashed lines include only the electron-ion collision.

    图 10  不稳定性增长率随气压的变化

    Fig. 10.  Instability growth rate vs. ambient gas pressure.

    表 1  真空背景(0.01 Pa)时典型的等离子体参数

    Table 1.  Characteristic plasma parameters at vacuum (0.01 Pa) ambient conditions.

    参数符号真空条件下的值
    靶材料C
    有效电荷数Z4.5
    磁场强度/TB7
    界面电子密度/(1018 cm–3)ne3
    离子初始速度/(μm·ns–1)Vi0150
    电子温度/eVTe20—50
    离子温度/eVTi20—50
    电子热速度/(μm·ns–1)Ve2300
    离子热速度/(μm·ns–1)Vi15.5
    不稳定性增长率/ns–1γ0.3
    不稳定性波长(μm)λ120
    等效加速度/(μm·ns–2)g5.8
    密度梯度标长/μmLn300
    等效“重力”漂移速度(μm·ns–1)Vg23.1
    抗磁漂移速度/(μm·ns–1)Vdi2.5
    总漂移速度/(μm·ns–1)VE25.6
    离子回旋半径/μmρi604
    电子回旋半径/μmρe1.9
    电子回旋频率/(1012 rad·s–1)ωce1.2
    离子回旋频率/(108 rad·s–1)ωci2.5
    低杂化频率/(106 rad·s–1)ωlh3.6
    电子等离子体频率/(1013 rad·s–1)ωpe6.5
    离子等离子体频率/(1011 rad·s–1)ωpi9.3
    磁约束半径/mmRB1
    背景气体密度/(1012 cm–3)nb2.4
    离子-离子碰撞频率/(105 s–1)$ {\nu }_{{\rm{i}}{\rm{i}}\text{'}} $5.1
    电子-离子碰撞频率/(105 s–1)$ {\nu }_{{\rm{e}}{\rm{i}}\text{'}} $2.3
    电子扩散系数/(105 μm2·s–1)De4.1
    下载: 导出CSV
  • [1]

    Lühr H, Klöcker N, Acuña M H 1988 Adv. Space Res. 8 11

    [2]

    Bernhardt P A 1992 Phys. Fluids B 4 2249Google Scholar

    [3]

    Valenzuela A, Haerendel G, Föppl H, Melzner F, Neuss H, Rieger E, Stöcker J, Bauer O, Höfner H, Loidl J 1986 Nature 320 700Google Scholar

    [4]

    Bernhardt P A, Roussel-Dupre R A, Pongratz M B, Haerendel G, Valenzuela A, Gurnett D A, Anderson R R 1987 J. Geophys. Res. Space Phys. 92 5777Google Scholar

    [5]

    Dimonte G, Wiley L G 1991 Phys. Rev. Lett. 67 1755Google Scholar

    [6]

    Peyser T A, Manka C K, Ripin B H, Ganguli G 1992 Phys. Fluids B 4 2448Google Scholar

    [7]

    Collette A, Gekelman W 2011 Phys. Plasmas 18 055705Google Scholar

    [8]

    Zakharov Y P 2002 Adv. Space. Res. 29 1335Google Scholar

    [9]

    Yao W P, Capitaine J, Khiar B, Vinci T, Burdonov K, Béard J, Fuchs J, Ciardi A 2022 Matter Radiat. Extremes 7 026903Google Scholar

    [10]

    Plechaty C, Presura R, Esaulov A A 2013 Phys. Rev. Lett. 111 185002Google Scholar

    [11]

    Ripin B H, McLean E A, Manka C K, Pawley C, Stamper J A, Peyser T A, Mostovych A N, Grun J, Hassam A B, Huba J D 1987 Phys. Rev. Lett. 59 2299Google Scholar

    [12]

    Brecht S H, Gladd N T 1992 IEEE Trans. Plasma Sci. 20 678Google Scholar

    [13]

    Tang H B, Hu G Y, Liang Y H, Wang Y L, Tao T, Hu P, Yuan P, Zhu P, Zuo Y, Zhao B, Zheng J 2020 Phys. Plasmas 27 022108Google Scholar

    [14]

    Tang H B, Hu G Y, Liang Y H, Tao T, Wang Y L, Hu P, Zhao B, Zheng J 2018 Plasma Phys. Controlled Fusion 60 055005Google Scholar

    [15]

    Hu P, Zhao J Y, Wang J C, Zhang Z C, Tang H B, Hu G Y 2022 J. Instrum. 17 P07036Google Scholar

    [16]

    Wang Y L, Hu G Y, Hu P, Liang Y H, Yuan P, Zheng J 2019 Rev. Sci. Instrum. 90 075108Google Scholar

    [17]

    Hu P, Hu G Y, Wang Y L, Tang H B, Zhang Z C, Zheng J 2020 Rev. Sci. Instrum. 91 014703Google Scholar

    [18]

    Hassam A B, Huba J D 1987 Geophys. Res. Lett. 14 60Google Scholar

    [19]

    Gisler G, Lemons D S 1989 J. Geophys. Res. Space Phys. 94 10145Google Scholar

    [20]

    Winske D 1988 J. Geophys. Res. Space Phys. 93 2539Google Scholar

    [21]

    Huba J D, Hassam A B, Winske D 1990 Phys. Fluids B 2 1676Google Scholar

    [22]

    Ali A W, McLean E A 1985 J. Quant. Spectrosc. Radiat. Transfer 33 381Google Scholar

    [23]

    Fiuza F, Swadling G F, Grassi A, et al. 2020 Nat. Phys. 16 916Google Scholar

  • [1] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [2] 殷佳鹏, 刘圣广. 用单发电子束探测激光等离子体内电磁场演化实验研究. 物理学报, 2022, 71(1): 012901. doi: 10.7498/aps.71.20211374
    [3] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈. 物理学报, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [4] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [5] 韩波, 梁雅琼. 质子成像法测量电容线圈靶磁场. 物理学报, 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
    [6] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [7] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [8] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究. 物理学报, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [9] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [10] 江强, 毛秀娟, 周细应, 苌文龙, 邵佳佳, 陈明. 外加磁场对磁控溅射制备氮化硅陷光薄膜的影响. 物理学报, 2013, 62(11): 118103. doi: 10.7498/aps.62.118103
    [11] 纪运景, 卞保民, 童朝霞, 陆 建. 靶材偏置低电压对激光等离子体诱导靶上电势信号的影响. 物理学报, 2008, 57(2): 980-984. doi: 10.7498/aps.57.980
    [12] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [13] 张秋菊, 盛政明, 王兴海, 满宝元, 苍 宇, 张 杰. 相位反射产生的激光场空洞现象及其与激光等离子体参数相关性研究. 物理学报, 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [14] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [15] 郑志远, 鲁 欣, 张 杰, 郝作强, 远晓辉, 王兆华. 激光等离子体动量转换效率的实验研究. 物理学报, 2005, 54(1): 192-196. doi: 10.7498/aps.54.192
    [16] 张秋菊, 盛政明, 苍 宇, 张 杰. 激光脉冲诱导的等离子体密度调制及其产生的相位反射. 物理学报, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [17] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [18] 顾震宇, 季沛勇. 等离子体密度对多光子电离的影响. 物理学报, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [19] 王薇, 张杰, V.K.Senecha. 对激光等离子体中X射线的产生与辐射加热研究. 物理学报, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  2813
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-08
  • 修回日期:  2023-08-03
  • 上网日期:  2023-09-05
  • 刊出日期:  2023-11-20

/

返回文章
返回