搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁空混合约束激光诱导Cu等离子体光谱特性

李百慧 高勋 宋超 林景全

引用本文:
Citation:

磁空混合约束激光诱导Cu等离子体光谱特性

李百慧, 高勋, 宋超, 林景全

Laser induced plasma spectral characteristics of Cu with magnetically and spatially combined confinement

Li Bai-Hui, Gao Xun, Song Chao, Lin Jing-Quan
PDF
导出引用
  • 本文基于发射光谱法对磁空混合约束铜等离子体光谱特性进行了研究,分析了磁空混合约束条件下铜等离子体光谱强度演化过程以及等离子体光谱轴向和横向分布.实验结果表明,在磁空混合约束和空间约束条件下等离子体光谱均出现增强,对原子光谱Cu I 521.8 nm的最大增强因子分别为2和1.2,磁空混合作用等离子体离子光谱增强效果大于纯空间约束情形.在磁空混合约束作用下,光谱增强在小延时来源于磁场约束产生,而大延时为空间约束产生.结合光学阴影成像法,分析了Cu I 521.8 nm谱线强度的轴向和横向空间强度分布,由于空间约束作用的冲击波反射压缩,使等离子体羽横向膨胀方向存在约束,使等离子体内原子数密度最大空间位置前移,造成了磁空混合约束下Cu I 521.8 nm谱线强度的轴向最大空间位置远离铜表面.
    In order to explore and understand the spectroscopic characteristics of laser induced plasma and spectral intensity distribution under magnetic-spatially combined confinement,in this paper,the laser induced breakdown plasma spectral characteristics of Cu with magnetic-spatially combined confinement,obtained by the optical emission spectroscopy and the optical shadow graph are studied.The temporal evolutions of spectral intensity and the axial and transversal distributions of Cu I 521.8 nm plasma spectrum with magnetic-spatially combined confinement are analyzed.The experimental results show that the laser induced Cu plasma spectra are all enhanced under the conditions of magneticspatially combined confinement and spatial confinement.In addition,the maximum enhancement factors of Cu I 521.8 nm in these two kinds of confinement conditions are 2 and 1.2,respectively.The enhanced effect of plasma ion spectrum in the magnetic-spatial field is stronger than that of spatial confinement.Under the effect of magnetic-spatially combined confinement,spectral enhancement mechanisms are derived from the magnetic field and spatial mixed actions.At the early stage of plasma expansion,the magnetic field action is a dominant factor.The charged particles in plasma are affected by the Lorenz force in the magnetic field which induces the charged particles to do the Lamor cyclotron motion, then the plasma expansion is restrained and the plasma volume decreases.The frequency of collisions between the electron and ion in the plasma increases.Therefore,the spectral intensities of atoms and ions are strengthened.For the case of the larger delay time,the spectral enhancement is caused by the spatial confinement.The axial and transversal spatial intensity distributions of Cu I 521.8 nm are analyzed by the optical shadow graph method.The plasma is compressed by the shock wave because the shock wave generated by the Cu plasma is reflected by the space plate.The transversal expansion of plasma plume is constrained by the spatial confinement,which causes the spatial position of the plasma internal atoms with high densityto move forward,and also induces the maximum axial spatial location of Cu I 521.8 nm spectral intensity to be far from the Cu metal surface.The results indicate that the axial distribution of plasma plume,obtained from the optical shadow graph is corresponding to the axial distribution of plasma spectrum obtained by the optical emission spectroscopy.In summary,the spectrum enhancement of laser induced plasma with the magnetic-spatial combined confinement is influenced by two forces:one is the magnetic force and the other is the compressive force caused by the shock wave.The study of the laser induced breakdown plasma spectral characteristics of Cu with magnetic-spatially combined confinement provides a simple and powerful tool for improving the sensitivity of laser induced breakdown spectroscopy.
      通信作者: 高勋, lasercust@163.com
    • 基金项目: 国家自然科学基金(批准号:61575030)资助的课题.
      Corresponding author: Gao Xun, lasercust@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575030).
    [1]

    Hemmerlin M, Meilland R, Falk H, Wintjens P, Paulard L 2001 Spectrochim. Acta Part B At. Spectrosc. 56 661

    [2]

    Michel A P, Lawrencesnyder M, Angel S M, Chave A D 2007 Appl. Opt. 46 2507

    [3]

    Hanafi M, Omar M M, Gamal E D 2000 Radiat. Phys. Chem. 57 11

    [4]

    Asimellis G, Hamilton S, Giannoudakos A, Kompitsas M 2005 Spectrochim. Acta Part B At. Spectrosc. 60 1132

    [5]

    Du C, Gao X, Shao Y, Song X W, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese)[杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全2013物理学报62 045202]

    [6]

    Harilal S S, Tillack M S, O'Shay B, Bindhu C V, Najmabadi F 2004 Phys. Rev. E 69 026413

    [7]

    Gao X, Liu L, Song C, Lin J Q 2015 J. Phys. D:Appl. Phys. 48 175205

    [8]

    Li C, Gao X, Liu L, Lin J Q 2014 Acta Phys. Sin. 63 145203 (in Chinese)[李丞, 高勋, 刘潞, 林景全2014物理学报63 145203]

    [9]

    Wang Z, Hou Z, Lui S L, Jiang D, Liu J, Li Z 2012 Opt. Express 20 1011

    [10]

    Shen X K, Sun J, Ling H, Lu Y F 2007 Appl. Phys. Lett. 91 081501

    [11]

    Guo L B, Hu W, Zhang B Y, He X N, Li C M, Zhou Y S, Cai Z X, Zeng X Y, Lu Y F 2011 Opt. Express 19 14067

    [12]

    Li Y, Hu C, Zhang H, Jiang Z, Li Z 2009 Appl. Opt. 48 B105

    [13]

    Pagano C, Hafeez S, Lunney J G 2009 J. Phys. D:Appl. Phys. 42 155205

    [14]

    Li C, Zhang L Y, Qian S W 1979 Thermology (Beijing:Higher Education Press) p72(in Chinese)[李椿, 章立源, 钱尚武1979热学(北京:高等教育出版社)第72页]

    [15]

    Qindeel R, Bidin N, Zia R, Daud Y M 2011 Optoelectron. Adv. Mat. Rapid Commun. 5 331

    [16]

    Tillack M S, Harilal S S, Najmabadi F, O'Shay J 2005 IFSA 5 45

  • [1]

    Hemmerlin M, Meilland R, Falk H, Wintjens P, Paulard L 2001 Spectrochim. Acta Part B At. Spectrosc. 56 661

    [2]

    Michel A P, Lawrencesnyder M, Angel S M, Chave A D 2007 Appl. Opt. 46 2507

    [3]

    Hanafi M, Omar M M, Gamal E D 2000 Radiat. Phys. Chem. 57 11

    [4]

    Asimellis G, Hamilton S, Giannoudakos A, Kompitsas M 2005 Spectrochim. Acta Part B At. Spectrosc. 60 1132

    [5]

    Du C, Gao X, Shao Y, Song X W, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese)[杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全2013物理学报62 045202]

    [6]

    Harilal S S, Tillack M S, O'Shay B, Bindhu C V, Najmabadi F 2004 Phys. Rev. E 69 026413

    [7]

    Gao X, Liu L, Song C, Lin J Q 2015 J. Phys. D:Appl. Phys. 48 175205

    [8]

    Li C, Gao X, Liu L, Lin J Q 2014 Acta Phys. Sin. 63 145203 (in Chinese)[李丞, 高勋, 刘潞, 林景全2014物理学报63 145203]

    [9]

    Wang Z, Hou Z, Lui S L, Jiang D, Liu J, Li Z 2012 Opt. Express 20 1011

    [10]

    Shen X K, Sun J, Ling H, Lu Y F 2007 Appl. Phys. Lett. 91 081501

    [11]

    Guo L B, Hu W, Zhang B Y, He X N, Li C M, Zhou Y S, Cai Z X, Zeng X Y, Lu Y F 2011 Opt. Express 19 14067

    [12]

    Li Y, Hu C, Zhang H, Jiang Z, Li Z 2009 Appl. Opt. 48 B105

    [13]

    Pagano C, Hafeez S, Lunney J G 2009 J. Phys. D:Appl. Phys. 42 155205

    [14]

    Li C, Zhang L Y, Qian S W 1979 Thermology (Beijing:Higher Education Press) p72(in Chinese)[李椿, 章立源, 钱尚武1979热学(北京:高等教育出版社)第72页]

    [15]

    Qindeel R, Bidin N, Zia R, Daud Y M 2011 Optoelectron. Adv. Mat. Rapid Commun. 5 331

    [16]

    Tillack M S, Harilal S S, Najmabadi F, O'Shay J 2005 IFSA 5 45

  • [1] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈. 物理学报, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [2] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [3] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [4] 陆中伟, 王晓方. 光源尺寸和光谱带宽对波带板成像的影响. 物理学报, 2019, 68(3): 035202. doi: 10.7498/aps.68.20181236
    [5] 郑培超, 李晓娟, 王金梅, 郑爽, 赵怀冬. 再加热双脉冲激光诱导击穿光谱技术对黄连中Cu和Pb的定量分析. 物理学报, 2019, 68(12): 125202. doi: 10.7498/aps.68.20190148
    [6] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [7] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [8] 杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全. 土壤中重金属元素的双脉冲激光诱导击穿光谱研究. 物理学报, 2013, 62(4): 045202. doi: 10.7498/aps.62.045202
    [9] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽. 物理学报, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [10] 纪运景, 卞保民, 童朝霞, 陆 建. 靶材偏置低电压对激光等离子体诱导靶上电势信号的影响. 物理学报, 2008, 57(2): 980-984. doi: 10.7498/aps.57.980
    [11] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [12] 张秋菊, 盛政明, 王兴海, 满宝元, 苍 宇, 张 杰. 相位反射产生的激光场空洞现象及其与激光等离子体参数相关性研究. 物理学报, 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [13] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [14] 郑志远, 鲁 欣, 张 杰, 郝作强, 远晓辉, 王兆华. 激光等离子体动量转换效率的实验研究. 物理学报, 2005, 54(1): 192-196. doi: 10.7498/aps.54.192
    [15] 张秋菊, 盛政明, 苍 宇, 张 杰. 激光脉冲诱导的等离子体密度调制及其产生的相位反射. 物理学报, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [16] 王哲斌, 赵 斌, 郑 坚, 胡广月, 刘万东, 俞昌旋, 蒋小华, 李文洪, 刘慎业, 丁永坤, 郑志坚. 激光等离子体中Thomson散射光谱的拟合. 物理学报, 2005, 54(1): 211-216. doi: 10.7498/aps.54.211
    [17] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [18] 王薇, 张杰, V.K.Senecha. 对激光等离子体中X射线的产生与辐射加热研究. 物理学报, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [19] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
    [20] 张杰, 王薇. 冲击波在铝靶中传播的数值模拟研究. 物理学报, 2001, 50(4): 741-747. doi: 10.7498/aps.50.741
计量
  • 文章访问数:  3283
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-07
  • 修回日期:  2016-09-05
  • 刊出日期:  2016-12-05

磁空混合约束激光诱导Cu等离子体光谱特性

  • 1. 长春理工大学理学院, 长春 130022;
  • 2. 长春理工大学化学与环境工程学院, 长春 130022
  • 通信作者: 高勋, lasercust@163.com
    基金项目: 国家自然科学基金(批准号:61575030)资助的课题.

摘要: 本文基于发射光谱法对磁空混合约束铜等离子体光谱特性进行了研究,分析了磁空混合约束条件下铜等离子体光谱强度演化过程以及等离子体光谱轴向和横向分布.实验结果表明,在磁空混合约束和空间约束条件下等离子体光谱均出现增强,对原子光谱Cu I 521.8 nm的最大增强因子分别为2和1.2,磁空混合作用等离子体离子光谱增强效果大于纯空间约束情形.在磁空混合约束作用下,光谱增强在小延时来源于磁场约束产生,而大延时为空间约束产生.结合光学阴影成像法,分析了Cu I 521.8 nm谱线强度的轴向和横向空间强度分布,由于空间约束作用的冲击波反射压缩,使等离子体羽横向膨胀方向存在约束,使等离子体内原子数密度最大空间位置前移,造成了磁空混合约束下Cu I 521.8 nm谱线强度的轴向最大空间位置远离铜表面.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回