搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再加热双脉冲激光诱导击穿光谱技术对黄连中Cu和Pb的定量分析

郑培超 李晓娟 王金梅 郑爽 赵怀冬

引用本文:
Citation:

再加热双脉冲激光诱导击穿光谱技术对黄连中Cu和Pb的定量分析

郑培超, 李晓娟, 王金梅, 郑爽, 赵怀冬

Quantitative analysis of Cu and Pb in Coptidis by reheated double pulse laser induced breakdown spectroscopy

Zheng Pei-Chao, Li Xiao-Juan, Wang Jin-Mei, Zheng Shuang, Zhao Huai-Dong
PDF
HTML
导出引用
  • 基于单脉冲激光诱导击穿光谱(single pulse laser-induced breakdown spectroscopy, SP-LIBS)实验装置, 搭建了再加热双脉冲激光诱导击穿光谱(re-heating double pulse laser-induced breakdown spectroscopy, RDP-LIBS)系统, 实现了黄连中重金属元素Cu和Pb的检测. 固定激光脉冲频率为4 Hz, 两束激光的总能量为50 mJ, 实验优化了增强电荷耦合器件探测延时、脉冲间隔和双激光脉冲能量组合等参数对Cu I (324.46 nm)和Pb I (405.78 nm)光谱强度的影响, 得特征谱线Cu I (324.46 nm)的最佳激光能量组为(E1 = 15 mJ, E2 = 35 mJ), 脉冲间隔和探测延时分别为1.4 μs和1.5 μs; Pb I (405.78 nm)的激光能量组也为(E1 = 15 mJ, E2 = 35 mJ), 脉冲间隔和探测延时分别为1.6 μs和1.7 μs. 为实现RDP-LIBS技术对中药材重金属元素检测性能的评估, 在最佳实验参数下, 分别对Cu和Pb进行SP-LIBS技术和RDP-LIBS技术定量分析, 检测限分别为1.91 mg/kg和3.03 mg/kg, 较SP-LIBS技术, 检测限均有所降低, 满足《药用植物进出口绿色行业标准》的要求, 且RDP-LIBS的线性曲线拟合度都优于SP-LIBS, 说明RDP-LIBS技术在中药材检测中具有更佳的检测性能.
    Coptidis plays an important role in the field of traditional Chinese medicine. However, it is easily polluted by heavy metals in environment (water and soil), and thus can affect human health. In order to detect the heavy metal elements Cu and Pb in Coptidis, which was purchased from the Chinese herbal medicine market in Chongqing, the reheated double-pulse laser-induced breakdown spectroscopy (RDP-LIBS) is investigated. In order to reduce the experimental error caused by the irregular shape, it is necessary to pretreat the Coptidis samples prior to the determination step. The Coptidis samples are dried, milled, and sieved to form thin cylindrical tablets each with a diameter of 13 mm and thickness of 2 mm, which are formed under a mechanical press of 10 MPa for 2 min. The influences of the main experimental parameters, such as double-pulse LIBS detection delay, double-pulse LIBS laser energy, and double-pulse LIBS pulse interval are optimized. According to the LIBS signal intensity and signal-to-background ratio, the optimal laser energy set of the characteristic line Cu I (324.46 nm) covers E1 = 15 mJ and E2 = 35 mJ, and the pulse interval and detection delay time are 1.4 μs and 1.5 μs respectively; the laser energy set of Pb I (405.78 nm) also covers E1 = 15 mJ and E2 = 35 mJ, and the pulse interval and detection delay time are 1.6 μs and 1.7 μs, respectively. Comparing with the scenarios of single-pulse laser-induced breakdown spectroscopy, it can be seen that the spectral intensity of Cu I (324.46 nm) increases from 5779 counts to 12749 counts, i.e. it increases about 2.2 times; the spectral intensity of Pb I (405.78 nm) characteristic line increases from 4703 counts to 15838 counts, i.e. it increases about 3.3 times. It is shown that the second laser pulse re-excites the plasma which is generated by the first laser pulse, thus making the plasma emission spectrum stronger. The detection performances of heavy metal elements in Chinese medicinal materials are evaluated by RDP-LIBS and SP-LIBS. The results show that the detection limit of Cu decreases from 5.13 mg/kg to 1.91 mg/kg, and the detection limit of Pb decreases from 10.87 mg/kg to 3.03 mg/kg. There was observed a noticeable difference in the limit of detection between Cu and Pb, which meets the requirements of the Green Industry Standard for Import and Export of Medicinal Plants. Moreover, the linear curve fitting degree of RDP-LIBS is higher than that of SP-LIBS, which indicates that the RDP-LIBS technology has better detection performance in Chinese herbal medicine.
      通信作者: 王金梅, wangjm@cqupt.edu.cn
      Corresponding author: Wang Jin-Mei, wangjm@cqupt.edu.cn
    [1]

    Yuan X D, Ling K W, Keuing C W 2009 Phytochem. Anal. 20 293Google Scholar

    [2]

    Arpadjan S, Celik G, Taşkesen S, Gucer S 2008 Food Chem. Toxicol. 46 2871Google Scholar

    [3]

    Zhang X H, Li H, Qin K M, Cai H, Liu X, Zheng L J, Gu J, Cai B C 2014 Anal. Lett. 47 1589Google Scholar

    [4]

    Guo Y M, Deng L M, Yang X Y, Li J M 2017 J. Anal. Atom. Spectrom. 32 2401Google Scholar

    [5]

    Zhu Z H, Li J M, Guo Y M, Cheng X, Tang Y, Guo L B, Li, X Y, Li, X Y, Lu Y F, Zeng, X Y, 2017 J. Anal. Atom. Spectrom. 32 205Google Scholar

    [6]

    Zheng P C, Liu H D, Wang J M, Shi M J, Wang X M, Zhang B, Yang R 2015 J. Anal. Atom. Spectrom. 30 867Google Scholar

    [7]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [8]

    Wang J M, Shi M J, Zheng P C 2017 J. Appl. Spectrosc. 84 188Google Scholar

    [9]

    Wang J M, Xue S W, Zheng P C, Chen Y Y, Peng R 2017 Anal. Lett. 50 2000Google Scholar

    [10]

    吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 物理学报 66 054206Google Scholar

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206Google Scholar

    [11]

    Wang Q Q, Liu K, Zhao H 2012 Chin. Phys. Lett. 29 044206Google Scholar

    [12]

    刘晓娜, 史新元, 贾帅芸, 赵娜, 吴志生, 乔延江 2015 中国中药杂志 40 2239

    Liu X N, Shi X Y, Jia S Y, Zhao N, Wu Z S, Qiao Y J 2015 China J. Chin. Mater. Med. 40 2239

    [13]

    李占锋, 王芮雯, 邓琥, 尚丽平 2016 红外与激光工程 45 1006003

    Li Z F, Wang R W, Deng H 2016 Infrared Laser Eng. 45 1006003

    [14]

    李占锋, 王芮雯, 邓琥, 尚丽平 2016 发光学报 37 100

    Li Z F, Wang R W, Deng H, Shang L P 2016 Chin. J. Lumin. 37 100

    [15]

    Wang J M, Liao X Y, Zheng P C, Xue S W, Peng R 2018 Anal. Lett. 51 575Google Scholar

    [16]

    Skrodzki P J, Becker J R, Diwakar P K, Harilal S S, Hassanein A 2016 Appl. Spectrosc. 70 467Google Scholar

    [17]

    Lei W Q, Motto-Ros V, Boueri M, Ma Q L, Zheng L J, Zeng H P, Yu J 2009 Spectrochim. Acta B 64 891Google Scholar

    [18]

    Wang Z Z, Deguchi Y, Liu R W, Ikutomo A, Zhang Z Z, Chong D T, Yan J P, Shiou F J 2017 Appl. Spectrosc. 71 2187Google Scholar

    [19]

    St-Onge L, Detalle V, Sabsabi M 2002 Spectrochim. Acta B 57 121Google Scholar

    [20]

    Ahmed R, Iqbal J, Baig M A 2015 Laser Phys. Lett. 12 066102Google Scholar

    [21]

    王金梅, 郑慧娟, 郑培超, 谭癸宁 2018 中国激光 45 0702006

    Wang J M, Zheng H J, Zheng P C, Tan G N 2018 Chin. J. Lasers 45 0702006

    [22]

    Yu J, Ma Q, Mottoros V, Lei W Q, Wang X C, Bai X S 2012 Front Phys.-Beijing 7 649Google Scholar

    [23]

    余洋, 赵南京, 方丽, 孟德硕, 谷艳红, 王园园, 贾尧, 马明俊, 刘建国, 刘文清 2017 光谱学与光谱分析 37 588

    Yu Y, Zhao N J, Fang L, Meng D S, Gu Y H, Wang Y Y, Jia Y, Ma M J, Liu J G, Liu W Q 2017 Spectrosc. Spect. Anal. 37 588

    [24]

    de Giacomo A, Dell'Aglio M, Bruno D, Gaudiuso R, de Pascale O 2008 Spectrochim. Acta B 63 805Google Scholar

    [25]

    Song C, Gao X, Shao Y 2016 Optik 127 3979Google Scholar

  • 图 1  正交RDP-LIBS实验装置

    Fig. 1.  Schematic diagram of the experimental setup for orthogonal re-heating DP-LIBS.

    图 2  黄连样品

    Fig. 2.  Coptidis Chinensis samples.

    图 3  光谱强度和信噪比随探测延时的变化规律

    Fig. 3.  Evolutions of spectral intensity and signal-to-noise ratio (SNR) at different delay times.

    图 4  光谱强度随激光能量的变化

    Fig. 4.  Variation of spectral intensity in different energy groups.

    图 5  光谱强度和信噪比随脉冲间隔的变化

    Fig. 5.  Variations of signal intensity and SNR as a function of pulse interval time

    图 6  SP-LIBS和RDP-LIBS光谱强度对比

    Fig. 6.  Comparison of spectral intensity between SP-LIBS and RDP-LIBS

    图 7  SP-LIBS和RDP-LIBS下Cu, Pb元素定标曲线拟合图

    Fig. 7.  Linear fitting curves of Cu and Pb in SP-LIBS and RDP-LIBS.

    表 1  特征谱线的检测限(LOD)和线性拟合度(R2)对比

    Table 1.  Comparison of detection limits and relative standard deviations of characteristic lines.

    特征谱线
    Cu I 324.46 nmPb I 405.78 nm
    LOD/mg·kg–1SP-LIBS5.1310.87
    RDP-LIBS1.913.03
    GB/T 5009205
    R2SP-LIBS0.97380.9287
    RDP-LIBS0.99310.9926
    下载: 导出CSV

    表 2  Cu和Pb检测能力对比

    Table 2.  Comparison of detection ability between Cu and Pb.

    元素
    误差分析Cu Pb
    实际值/mg·kg–1测量值/mg·kg–1相对误差/%精密度/% 实际值/mg·kg–1测量值/mg·kg–1相对误差/%精密度/%
    SP-LIBS8067.715.49.8 800638.320.25.4
    300244.418.57.6 64007163.511.94.2
    RDP-LIBS8069.513.17.8 800693.913.23.6
    300323.57.73.1 64005936.47.23.8
    下载: 导出CSV
  • [1]

    Yuan X D, Ling K W, Keuing C W 2009 Phytochem. Anal. 20 293Google Scholar

    [2]

    Arpadjan S, Celik G, Taşkesen S, Gucer S 2008 Food Chem. Toxicol. 46 2871Google Scholar

    [3]

    Zhang X H, Li H, Qin K M, Cai H, Liu X, Zheng L J, Gu J, Cai B C 2014 Anal. Lett. 47 1589Google Scholar

    [4]

    Guo Y M, Deng L M, Yang X Y, Li J M 2017 J. Anal. Atom. Spectrom. 32 2401Google Scholar

    [5]

    Zhu Z H, Li J M, Guo Y M, Cheng X, Tang Y, Guo L B, Li, X Y, Li, X Y, Lu Y F, Zeng, X Y, 2017 J. Anal. Atom. Spectrom. 32 205Google Scholar

    [6]

    Zheng P C, Liu H D, Wang J M, Shi M J, Wang X M, Zhang B, Yang R 2015 J. Anal. Atom. Spectrom. 30 867Google Scholar

    [7]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [8]

    Wang J M, Shi M J, Zheng P C 2017 J. Appl. Spectrosc. 84 188Google Scholar

    [9]

    Wang J M, Xue S W, Zheng P C, Chen Y Y, Peng R 2017 Anal. Lett. 50 2000Google Scholar

    [10]

    吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 物理学报 66 054206Google Scholar

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206Google Scholar

    [11]

    Wang Q Q, Liu K, Zhao H 2012 Chin. Phys. Lett. 29 044206Google Scholar

    [12]

    刘晓娜, 史新元, 贾帅芸, 赵娜, 吴志生, 乔延江 2015 中国中药杂志 40 2239

    Liu X N, Shi X Y, Jia S Y, Zhao N, Wu Z S, Qiao Y J 2015 China J. Chin. Mater. Med. 40 2239

    [13]

    李占锋, 王芮雯, 邓琥, 尚丽平 2016 红外与激光工程 45 1006003

    Li Z F, Wang R W, Deng H 2016 Infrared Laser Eng. 45 1006003

    [14]

    李占锋, 王芮雯, 邓琥, 尚丽平 2016 发光学报 37 100

    Li Z F, Wang R W, Deng H, Shang L P 2016 Chin. J. Lumin. 37 100

    [15]

    Wang J M, Liao X Y, Zheng P C, Xue S W, Peng R 2018 Anal. Lett. 51 575Google Scholar

    [16]

    Skrodzki P J, Becker J R, Diwakar P K, Harilal S S, Hassanein A 2016 Appl. Spectrosc. 70 467Google Scholar

    [17]

    Lei W Q, Motto-Ros V, Boueri M, Ma Q L, Zheng L J, Zeng H P, Yu J 2009 Spectrochim. Acta B 64 891Google Scholar

    [18]

    Wang Z Z, Deguchi Y, Liu R W, Ikutomo A, Zhang Z Z, Chong D T, Yan J P, Shiou F J 2017 Appl. Spectrosc. 71 2187Google Scholar

    [19]

    St-Onge L, Detalle V, Sabsabi M 2002 Spectrochim. Acta B 57 121Google Scholar

    [20]

    Ahmed R, Iqbal J, Baig M A 2015 Laser Phys. Lett. 12 066102Google Scholar

    [21]

    王金梅, 郑慧娟, 郑培超, 谭癸宁 2018 中国激光 45 0702006

    Wang J M, Zheng H J, Zheng P C, Tan G N 2018 Chin. J. Lasers 45 0702006

    [22]

    Yu J, Ma Q, Mottoros V, Lei W Q, Wang X C, Bai X S 2012 Front Phys.-Beijing 7 649Google Scholar

    [23]

    余洋, 赵南京, 方丽, 孟德硕, 谷艳红, 王园园, 贾尧, 马明俊, 刘建国, 刘文清 2017 光谱学与光谱分析 37 588

    Yu Y, Zhao N J, Fang L, Meng D S, Gu Y H, Wang Y Y, Jia Y, Ma M J, Liu J G, Liu W Q 2017 Spectrosc. Spect. Anal. 37 588

    [24]

    de Giacomo A, Dell'Aglio M, Bruno D, Gaudiuso R, de Pascale O 2008 Spectrochim. Acta B 63 805Google Scholar

    [25]

    Song C, Gao X, Shao Y 2016 Optik 127 3979Google Scholar

  • [1] 潘钦杰, 赵灿东, 陈琪, 何毓辉, 缪向水. 面向单分子检测的纳米孔传感特异性增强技术. 物理学报, 2024, 73(10): 108702. doi: 10.7498/aps.73.20240159
    [2] 赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列. 基于光谱增强技术实现对532 nm波长激光频率标定. 物理学报, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [3] 王林, 李淑贤, 李军伟, 焦月春, 杨勇刚, 赵建明, 李昌勇. 苯乙腈的单色共振增强双光子电离光谱及其Franck-Condon模拟. 物理学报, 2023, 72(13): 133301. doi: 10.7498/aps.72.20230278
    [4] 李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇. 邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟. 物理学报, 2022, 71(2): 023301. doi: 10.7498/aps.71.20211659
    [5] 王钰豪, 刘建国, 徐亮, 成潇潇, 邓亚颂, 沈先春, 孙永丰, 徐寒杨. 傅里叶红外光谱气体检测限的定性分析. 物理学报, 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [6] 李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊. 基于磁集聚效应的系综NV色心磁检测增强. 物理学报, 2021, 70(14): 147601. doi: 10.7498/aps.70.20210129
    [7] 李娜, 李昌勇. 邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211659
    [8] 卞晓鸽, 周胜, 张磊, 何天博, 李劲松. 基于标准样品回归算法和腔增强光谱的NO2检测方法. 物理学报, 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [9] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [10] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器. 物理学报, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [11] 刘欢, 曹士英, 于洋, 林百科, 方占军. 级联掺Yb增益光纤提高拍频信号信噪比的实验研究. 物理学报, 2017, 66(2): 024206. doi: 10.7498/aps.66.024206
    [12] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [13] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [14] 李晋, 汤井田, 王玲, 肖晓, 张林成. 基于信号子空间增强和端点检测的大地电磁噪声压制. 物理学报, 2014, 63(1): 019101. doi: 10.7498/aps.63.019101
    [15] 马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元. 基于光谱椭偏仪的纳米光栅无损检测. 物理学报, 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [16] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [17] 王璐, 许录平, 张华, 罗楠. 基于S变换的脉冲星辐射脉冲信号检测. 物理学报, 2013, 62(13): 139702. doi: 10.7498/aps.62.139702
    [18] 杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全. 土壤中重金属元素的双脉冲激光诱导击穿光谱研究. 物理学报, 2013, 62(4): 045202. doi: 10.7498/aps.62.045202
    [19] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究. 物理学报, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [20] 郏东耀, 丁天怀. 皮棉杂质透射检测及成像目标增强方法. 物理学报, 2005, 54(9): 4058-4064. doi: 10.7498/aps.54.4058
计量
  • 文章访问数:  8215
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-25
  • 修回日期:  2019-04-09
  • 上网日期:  2019-06-06
  • 刊出日期:  2019-06-20

/

返回文章
返回