搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

级联掺Yb增益光纤提高拍频信号信噪比的实验研究

刘欢 曹士英 于洋 林百科 方占军

引用本文:
Citation:

级联掺Yb增益光纤提高拍频信号信噪比的实验研究

刘欢, 曹士英, 于洋, 林百科, 方占军

Experimental study on increasing signal-to-noise ratio of a beat note by cascading an Yb-doped fiber in an Er-fiber comb

Liu Huan, Cao Shi-Ying, Yu Yang, Lin Bai-Ke, Fang Zhan-Jun
PDF
导出引用
  • 飞秒光学频率梳的出现使对未知激光的绝对频率测量成为可能,极大地简化了激光绝对频率的量值溯源和比对工作.为了保证测量数值的准确性,飞秒光学频率梳与未知激光的拍频信号fb的信噪比要求大于30 dB.针对碘稳频532 nm激光绝对频率测量的特定需求,以532 nm激光的基频光1064 nm激光的绝对频率测量为着眼点,本文采用303 MHz重复频率的掺Er光纤光学频率梳,首先通过激光放大和光谱展宽技术使光谱覆盖到1 μm波段,然后采用级联掺Yb增益光纤技术,将扩谱后1 μm波段的激光功率进行放大,提高了掺Er光纤光学频率梳扩谱后1 μm波长附近的激光强度.采用碘稳频532 nm激光的基频光作为待测光源与飞秒光学频率梳进行拍频.实验表明,与未经过光谱增强的激光相比,光谱增强后的激光与1064 nm激光拍频信号的信噪比提高了5 dB,保持在35 dB附近.该技术有效地缓解了采用掺Er光纤光梳测量1064 nm激光绝对频率时对直接扩谱所获得的1 μm波长激光的强度要求.
    The harmonic optical frequency chain is the only tool for measuring optical frequency till the advent of a femtosecond optical frequency comb (FOFC). However, its disadvantages are obvious, such as high cost, difficult construction, complex usage, and complicated maintenance. The emergence of femtosecond optical frequency combs (FOFCs) makes it possible to measure the absolute frequency of a laser, which greatly simplifies the quantity traceability of the absolute frequency value and comparison, and allows the length unit “m” to be directly traced back to the time unit “s”. The beat note (fb) between an FOFC and a test laser is one of the most important data in measuring absolute frequency of the test laser. In order to ensure the accuracy and reliability of the measurement, the signal-to-noise ratio (SNR) of fb should be above 30 dB at 300 kHz resolution bandwidth. Among the wavelength standards recommended to replicate “meter” (SI), iodine-stabilized 633 nm lasers and iodine-stabilized 532 nm lasers have been widely used. Compared with iodine-stabilized 633 nm lasers, iodine-stabilized 532 nm lasers have the advantages of high stability, high output power, no modulation and fiber coupled output. Therefore, it is of great importance to measure and monitor the absolute frequency of an iodine-stabilized 532 nm laser. Aiming at the specific requirements for absolute frequency measurement of an iodine-stabilized 532 nm laser, the absolute frequency measurement of its fundamental 1064 nm laser has been studied. In this paper, a high-repetition-rate Er-doped femtosecond fiber laser is adopted as an optical source in the system. The repetition rate of the fiber laser is 303 MHz, the output power in the continuous-wave state is 130 mW and the average output power in the mode-locking state is 80 mW. The highest SNR of fb between the comb light and a 1064 nm laser generated by an iodine-stabilized 532 nm laser is only 30 dB due to the low intensity at 1 μm wavelength in the supercontinuum, which just reaches the SNR threshold meeting the counter's working condition. In order to improve the accuracy and reliability of absolute frequency measurement, the technique of cascading an Yb-doped fiber amplifier after spectral broadening is adopted to enhance the spectral intensity at 1 μm wavelength. The experimental results indicate that the SNR of fb between a 1 μm laser after spectral enhancement and a 1064 nm laser is increased by 5 dB and kept at 35 dB for several days, meeting requirements for long-term continuous monitoring. This method can effectively reduce the intensity requirements at 1 μm wavelength when the spectrum is directly broadened in the Er-FOFC.
      通信作者: 曹士英, caoshiying@nim.ac.cn
    • 基金项目: 清华大学自主科研计划——青年教师自主选题基础研究(批准号:20131089299)和质检公益性行业科研专项(批准号:201310007)资助的课题.
      Corresponding author: Cao Shi-Ying, caoshiying@nim.ac.cn
    • Funds: Project supported by Tsinghua University Initiative Scientific Research Program, China (Grant No. 20131089299) and the Special Scientific Research Foundation of General Administration of Quality Supervision, Inspection and Quarantine of China (Grant No. 201310007).
    [1]

    Ma L S, Zucco M, Picard S, Robertsson L, Windeler R S 2003 IEEE J. Sel. Top. Quantum. Electron. 9 1066

    [2]

    Ma L S, Robertsson L, Picard S, Chartier J M, Karlsson H, Prieto E, Windeler R S 2003 IEEE. Trans. Instrum. Meas. 52 232

    [3]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Coq Y L, Kersalé Y, Santarelli G 2009 Opt. Lett. 34 3707

    [4]

    Peng J L, Ahn H, Shu R H, Chui H C, Nicholson J W 2007 Appl. Phys. B 86 49

    [5]

    Klose A, Ycas G, Maser D L, Diddams S A 2014 Opt. Express 22 28400

    [6]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jørgensen C G 2004 Opt. Lett. 29 250

    [7]

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204 (in Chinese)[刘欢,曹士英,孟飞,林百科,方占军2015物理学报64 094204]

    [8]

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Laser Phys. 25 075105

    [9]

    Lea S N, Rowley W R C, Margolis H S, Barwood G P, Huang G, Gill P, Chartier J M, Windeler R S 2003 Metrologia 40 84

    [10]

    Eickhoff M L, Hall J L 1995 IEEE Trans. Instrum. Meas. 44 155

    [11]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hänsch T W 2000 Phys. Rev. Lett. 84 5102

    [12]

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y G, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chinese J. Lasers 41 0902002 (in Chinese)[林百科,曹士英,赵阳,李烨,王强,林弋戈,曹建平,臧二军,方占军,李天初2014中国激光41 0902002]

    [13]

    Kharenko D S, Podivilov E V, Apolonski A A, Babin S A 2012 Opt. Lett. 37 4104

    [14]

    Li C, Ma Y X, Gao X, Niu F Z, Jiang T X, Wang A M, Zhang Z G 2015 Appl. Opt. 54 8350

    [15]

    Chen W, Song Y, Jung K, Hu M L, Wang C Y, Kim J 2016 Opt. Express 24 1347

    [16]

    Xie C, Liu B W, Niu H L, Song Y J, Li Y, Hu M L, Zhang Y G, Shen W D, Liu X, Wang C Y 2011 Opt. Lett. 36 4149

    [17]

    Wang S J, Liu B W, Gu C L, Song Y J, Qian C, Hu M L, Chai L, Wang C Y 2013 Opt. Lett. 38 296

    [18]

    Ycas G, Osterman S, Diddams S A 2012 Opt. Lett. 37 2199

    [19]

    Kieu K, Jones R J, Peyghambarian N 2010 Opt. Express 18 21350

    [20]

    Kim Y, Kim Y J, Kim S, Kim S W 2009 Opt. Express 17 18606

    [21]

    Alder F, Diddams S A 2012 Opt. Lett. 37 1400

    [22]

    Klose A, Ycas G, Cruze F C, Maser D L, Diddams S A 2016 Appl. Phys. B 122 77

    [23]

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210 (in Chinese)[刘欢, 巩马理, 曹士英, 林百科, 方占军2015物理学报64 114210]

  • [1]

    Ma L S, Zucco M, Picard S, Robertsson L, Windeler R S 2003 IEEE J. Sel. Top. Quantum. Electron. 9 1066

    [2]

    Ma L S, Robertsson L, Picard S, Chartier J M, Karlsson H, Prieto E, Windeler R S 2003 IEEE. Trans. Instrum. Meas. 52 232

    [3]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Coq Y L, Kersalé Y, Santarelli G 2009 Opt. Lett. 34 3707

    [4]

    Peng J L, Ahn H, Shu R H, Chui H C, Nicholson J W 2007 Appl. Phys. B 86 49

    [5]

    Klose A, Ycas G, Maser D L, Diddams S A 2014 Opt. Express 22 28400

    [6]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jørgensen C G 2004 Opt. Lett. 29 250

    [7]

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204 (in Chinese)[刘欢,曹士英,孟飞,林百科,方占军2015物理学报64 094204]

    [8]

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Laser Phys. 25 075105

    [9]

    Lea S N, Rowley W R C, Margolis H S, Barwood G P, Huang G, Gill P, Chartier J M, Windeler R S 2003 Metrologia 40 84

    [10]

    Eickhoff M L, Hall J L 1995 IEEE Trans. Instrum. Meas. 44 155

    [11]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hänsch T W 2000 Phys. Rev. Lett. 84 5102

    [12]

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y G, Cao J P, Zang E J, Fang Z J, Li T C 2014 Chinese J. Lasers 41 0902002 (in Chinese)[林百科,曹士英,赵阳,李烨,王强,林弋戈,曹建平,臧二军,方占军,李天初2014中国激光41 0902002]

    [13]

    Kharenko D S, Podivilov E V, Apolonski A A, Babin S A 2012 Opt. Lett. 37 4104

    [14]

    Li C, Ma Y X, Gao X, Niu F Z, Jiang T X, Wang A M, Zhang Z G 2015 Appl. Opt. 54 8350

    [15]

    Chen W, Song Y, Jung K, Hu M L, Wang C Y, Kim J 2016 Opt. Express 24 1347

    [16]

    Xie C, Liu B W, Niu H L, Song Y J, Li Y, Hu M L, Zhang Y G, Shen W D, Liu X, Wang C Y 2011 Opt. Lett. 36 4149

    [17]

    Wang S J, Liu B W, Gu C L, Song Y J, Qian C, Hu M L, Chai L, Wang C Y 2013 Opt. Lett. 38 296

    [18]

    Ycas G, Osterman S, Diddams S A 2012 Opt. Lett. 37 2199

    [19]

    Kieu K, Jones R J, Peyghambarian N 2010 Opt. Express 18 21350

    [20]

    Kim Y, Kim Y J, Kim S, Kim S W 2009 Opt. Express 17 18606

    [21]

    Alder F, Diddams S A 2012 Opt. Lett. 37 1400

    [22]

    Klose A, Ycas G, Cruze F C, Maser D L, Diddams S A 2016 Appl. Phys. B 122 77

    [23]

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210 (in Chinese)[刘欢, 巩马理, 曹士英, 林百科, 方占军2015物理学报64 114210]

  • [1] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 物理学报, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [2] 曹士英, 林百科, 袁小迪, 丁永今, 孟飞, 方占军. 掺Er光纤飞秒激光器中电光晶体对激光器参数的影响. 物理学报, 2021, 70(7): 074203. doi: 10.7498/aps.70.20201564
    [3] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用. 物理学报, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [4] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [5] 郑培超, 李晓娟, 王金梅, 郑爽, 赵怀冬. 再加热双脉冲激光诱导击穿光谱技术对黄连中Cu和Pb的定量分析. 物理学报, 2019, 68(12): 125202. doi: 10.7498/aps.68.20190148
    [6] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定. 物理学报, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [7] 成健, 冯晋霞, 李渊骥, 张宽收. 基于量子增强型光纤马赫-曾德尔干涉仪的低频信号测量. 物理学报, 2018, 67(24): 244202. doi: 10.7498/aps.67.20181335
    [8] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [9] 刘欢, 巩马理, 曹士英, 林百科, 方占军. 303MHz高重复频率掺Er光纤飞秒激光器. 物理学报, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [10] 刘欢, 曹士英, 孟飞, 林百科, 方占军. 覆盖可见光波长的掺Er光纤飞秒光学频率梳. 物理学报, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [11] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [12] 杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全. 土壤中重金属元素的双脉冲激光诱导击穿光谱研究. 物理学报, 2013, 62(4): 045202. doi: 10.7498/aps.62.045202
    [13] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [14] 曹士英, 孟飞, 方占军, 李天初. 掺Er光纤飞秒激光器中高信噪比载波包络位相偏移频率获取的实验研究. 物理学报, 2012, 61(6): 064208. doi: 10.7498/aps.61.064208
    [15] 曹士英, 孟飞, 林百科, 方占军, 李天初. 长时间精密锁定的掺Er光纤飞秒光学频率梳. 物理学报, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [16] 曹士英, 方占军, 孟飞, 王强, 李天初. 双路光谱展宽的钛宝石飞秒光学频率梳系统. 物理学报, 2011, 60(8): 080601. doi: 10.7498/aps.60.080601
    [17] 孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军. 光纤飞秒光学频率梳的研制及绝对光学频率测量. 物理学报, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [18] 曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初. 掺Er光纤飞秒激光器载波包络位相偏移的探测. 物理学报, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [19] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
    [20] 谢旭东, 王清月, 王 专, 张伟力, 柴 路. 超宽光谱掺钛蓝宝石飞秒激光器时域频域特性的实验研究. 物理学报, 2005, 54(7): 3159-3163. doi: 10.7498/aps.54.3159
计量
  • 文章访问数:  3176
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-02
  • 修回日期:  2016-08-31
  • 刊出日期:  2017-01-20

级联掺Yb增益光纤提高拍频信号信噪比的实验研究

  • 1. 清华大学精密仪器系激光与光子技术研究室, 北京 100084;
  • 2. 中国计量科学研究院时间频率计量研究所, 北京 100029
  • 通信作者: 曹士英, caoshiying@nim.ac.cn
    基金项目: 清华大学自主科研计划——青年教师自主选题基础研究(批准号:20131089299)和质检公益性行业科研专项(批准号:201310007)资助的课题.

摘要: 飞秒光学频率梳的出现使对未知激光的绝对频率测量成为可能,极大地简化了激光绝对频率的量值溯源和比对工作.为了保证测量数值的准确性,飞秒光学频率梳与未知激光的拍频信号fb的信噪比要求大于30 dB.针对碘稳频532 nm激光绝对频率测量的特定需求,以532 nm激光的基频光1064 nm激光的绝对频率测量为着眼点,本文采用303 MHz重复频率的掺Er光纤光学频率梳,首先通过激光放大和光谱展宽技术使光谱覆盖到1 μm波段,然后采用级联掺Yb增益光纤技术,将扩谱后1 μm波段的激光功率进行放大,提高了掺Er光纤光学频率梳扩谱后1 μm波长附近的激光强度.采用碘稳频532 nm激光的基频光作为待测光源与飞秒光学频率梳进行拍频.实验表明,与未经过光谱增强的激光相比,光谱增强后的激光与1064 nm激光拍频信号的信噪比提高了5 dB,保持在35 dB附近.该技术有效地缓解了采用掺Er光纤光梳测量1064 nm激光绝对频率时对直接扩谱所获得的1 μm波长激光的强度要求.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回