搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用

陶蒙蒙 陶波 叶景峰 沈炎龙 黄珂 叶锡生 赵军

引用本文:
Citation:

可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用

陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军

Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application

Tao Meng-Meng, Tao Bo, Ye Jing-Feng, Shen Yan-Long, Huang Ke, Ye Xi-Sheng, Zhao Jun
PDF
HTML
导出引用
  • 可调谐二极管激光吸收光谱技术是一种应用非常广泛的吸收光谱测量技术. 利用宽带可调谐窄线宽光源进行吸收光谱测量的超光谱吸收技术可以在单次扫描中获取一段连续光谱的所有吸收数据, 可大大提高可调谐二极管激光吸收光谱技术的数据信息容量和光谱诊断能力. 分析了在2 μm波段对水进行超光谱吸收测量时对激光器输出线宽的具体要求. 利用掺铥光纤在2 μm波段较宽的发射谱, 采用可调谐法布里-珀罗滤波器和光纤可饱和吸收体相结合的技术方案搭建了一台宽带调谐窄线宽的2 μm光纤激光器. 获得了1840—1900 nm约60 nm范围的调谐光谱输出, 激光器静态线宽仅为0.05 nm. 利用该光源对空气中水在2 μm波段的吸收光谱数据进行了超光谱吸收测量, 在1856—1886 nm约30 nm的光谱范围内分辨了35条水的吸收谱线. 通过对不同线宽条件下1870—1880 nm范围内的理论吸收光谱数据进行对比发现, 测量数据无法有效分辨分别位于1873 nm和1877 nm处与强吸收线相邻的两条吸收谱线, 且测量结果与激光线宽在0.08 nm条件下的HITRAN2012光谱数据库最为接近. 这表明, 在动态扫描过程中激光器的线宽得到了展宽.
    Tunable diode laser absorption spectroscopy (TDLAS) is a widely used technology for measuring absorption spectrum. However, the measurement efficiency of TDLAS is greatly limited by the narrow tuning range of conventional tunable laser diode. Exploiting a wideband, narrow linewidth tuning laser source, hyperspectral absorption spectroscopy possesses the ability to provide the overall absorption information over a continuous waveband in a single scan, which would significantly improve the data volume and diagnostic capability of TDLAS. With profound and strong absorption lines of water and carbon dioxide, the 2 μm waveband is an ideal candidate for water and carbon dioxide related absorption spectrum. An absorption line recognition threshold of 0.07 nm is derived for the absorption spectrum measurement of water around 2 μm through theoretical analysis. Utilizing the wideband emission spectrum of Tm-doped fiber, a wideband tunable, narrow linewidth fiber laser operating at 2 μm is built by combining a tunable FP filter with a fiber saturable absorber. The tunable FP filter is responsible for the wavelength control of the laser system, with which a 60 nm wideband tuning range from 1840 nm to 1900 nm is achieved. With a section of Tm-Ho codoped fiber as the fiber saturable absorber which is used for linewidth compression, a static linewidth of 0.05 nm is attained. This wideband tunable, narrow linewidth fiber laser is tested for the hyperspectral absorption spectrum measurement of water around 2 μm. Drived with a 0–10 V triangle wave at a repetition rate of 50 Hz, the output spectrum of the laser spans over a wavelength range of about 30 nm from 1856 nm to 1886 nm. The laser beam propagates about 50 cm through an open air, and then enters into the detectors for direct measurement. The 35 absorption lines of water are recognized after processing the data. Within the 1870–1880 nm range, comparisons with the theoretical absorption spectra at different laser linewidths, derived from the HITRAN2012 absorption database, show that the measured data cannot effectively distinguish two absorption lines adjacent to the strong absorption line at 1873 nm and 1877 nm. And, the measured results can be best fitted to a laser linewidth of about 0.08 nm, demonstrating that in the dynamic scanning process, the linewidth of the laser is expanded beyond the absorption line recognition threshold. Thus, when operating in a fast wideband scanning mode, the laser system should further compress its linewidth.
      通信作者: 陶波, taobo@nint.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 91541203, 91641112)和激光与物质相互作用国家重点实验室基金(批准号: SKLLIM1709)资助的课题
      Corresponding author: Tao Bo, taobo@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91541203, 91641112) and the Fund of the State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLLIM1709)
    [1]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energ. Combust. Sci. 60 132

    [2]

    Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta B 106 45Google Scholar

    [3]

    丁武文, 孙利群, 衣路英 2017 物理学报 66 100702Google Scholar

    Ding W W, Sun L Q, Yi L Y 2017 Acta Phys. Sin. 66 100702Google Scholar

    [4]

    Wu Q, Wang F, Li M, Yan J 2017 Combust. Sci. Technol. 189 1571Google Scholar

    [5]

    Sur R, Sun K, Jeffries J B, Socha J G, Hanson R K 2015 Fuel 150 102Google Scholar

    [6]

    Tao B, Hu Z Y, Fan W, Wang S, Ye J F, Zhang Z R 2017 Opt. Express 25 A762Google Scholar

    [7]

    Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar

    [8]

    Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun. 346 53Google Scholar

    [9]

    Kranendonk L A, Caswell A W, Hagen C L, Neuroth C T, Shouse D T, Gord J R, Sanders S T 2009 J. Propul. Power 25 859Google Scholar

    [10]

    Ma L, Cai W, Caswell A W, Kraetschmer T, Sanders S T, Roy S, Gord J R 2009 Opt. Express 17 8602Google Scholar

    [11]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovt-seva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Ra. 130 4Google Scholar

    [12]

    聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏 2017 物理学报 66 204204Google Scholar

    Nie W, Kan R F, Xu Z Y, Yao L, Xia H H, Peng Y Q, Zhang B Q, He Y B 2017 Acta Phys. Sin. 66 204204Google Scholar

    [13]

    Refaat T F, Singh U N, Yu J, Petros M, Ismail S, Kavaya M J, Davis K J 2015 Appl. Opt. 54 1387Google Scholar

    [14]

    Gibert F, Flamant P H, Bruneau D, Loth C 2006 Appl. Opt. 45 4448Google Scholar

    [15]

    Jackson S D, King T A 1999 J. Lightwave Technol. 17 948Google Scholar

    [16]

    Jackson S D 2006 IEEE Photon. Technol. Lett. 18 1885Google Scholar

    [17]

    Jackson S D 2009 Laser Photon. Rev. 3 466Google Scholar

    [18]

    Stark A, Correia L, Teichmann M, Salewski S, Larsen C, Baev V M, Toschek P E 2003 Opt. Commun. 215 113Google Scholar

    [19]

    Young R J De, Barnes N P 2010 Appl. Opt. 49 562Google Scholar

    [20]

    Bremer K, Pal A, Yao S, Lewis E Sen R, Sun T, Grattan K T V 2013 Appl. Opt. 52 3957Google Scholar

    [21]

    陶蒙蒙, 陶波, 余婷, 王振宝, 冯国斌, 叶锡生 2016 红外与激光工程 45 1205002Google Scholar

    Tao M M, Tao B, Yu T, Wang Z B, Feng G B, Ye X S 2016 Infrar. Laser Eng. 45 1205002Google Scholar

    [22]

    Tao M M, Feng G B, Yu T, Ye X S, Wang Z B, Shen Y L, Zhao J 2018 Opt. Laser Technol. 100 176Google Scholar

    [23]

    Tao M M, Yu T, Chen H W, Shen Y L, Ye X S, Zhao J 2018 Laser Phys. 28 115108Google Scholar

  • 图 1  水在1840−1900 nm波段的吸收谱线

    Fig. 1.  Absorption spectrum of water in the wavelength range of 1840−1900 nm

    图 2  不同激光线宽对1870 nm附近吸收谱线的影响

    Fig. 2.  Influences of laser linewidth on the detected absorption lines around 1870 nm.

    图 3  基于光纤可饱和吸收体的激光器线宽压缩光路设计(WDM, 反射式波分复用器; OC, 输出耦合器; ISO, 光纤隔离器; FSA, 光纤可饱和吸收体; FP filter, 法布里-珀罗滤波器)

    Fig. 3.  Linewidth compression design of laser based on fiber saturable absorber (WDM, wavelength division multiplexer; OC, output coupler; ISO, isolator; FSA, fiber saturable absorber; FP filter, Fabry Perot filter).

    图 4  低抽运功率下激光器脉冲输出序列

    Fig. 4.  Output pulse train of laser at low pump power.

    图 5  低抽运功率下半个扫描周期内的输出脉冲 (a)脉冲序列; (b)单个脉冲

    Fig. 5.  Output pulses in a half scanning period at low pump power: (a) Pulse train; (b) a single pulse.

    图 6  连续运转模式下激光器的长时间输出功率监测

    Fig. 6.  Long-time output power record of laser at continuous wave operation.

    图 7  连续运转模式下激光器的瞬时输出功率监测

    Fig. 7.  Instantaneous output power of laser at continuous wave operation

    图 8  加入光纤可饱和吸收体后激光器典型输出光谱

    Fig. 8.  Typical output spectrum of laser with fiber saturable absorber.

    图 9  法布里-珀罗干涉仪扫描得到的激光器线宽特性

    Fig. 9.  Laser linewidth measured with a scanning Fabry-Perot interferometer.

    图 10  偏振控制条件下激光器输出纵模特性 (a)双纵模; (b)单纵模

    Fig. 10.  Oscillating laser modes measured with polarization control: (a) Dual modes; (b) single mode.

    图 11  实验测得的吸收信号: (a) HgCdTe探测器; (b) InGaAs PDA探测器

    Fig. 11.  Measured absorption signal: (a) HgCdTe detector; (b) InGaAs PDA detector.

    图 12  典型的单个激光器扫描周期内测量的直接吸收光谱(内插图为局部的吸收光谱放大图)

    Fig. 12.  Typical direct absorption spectrum in a single scanning period. The insert is the enlarged local absorption spectrum.

    图 13  1856—1886 nm范围内水的吸收光谱数据

    Fig. 13.  Absorption spectra of water from 1856 nm to 1886 nm

    图 14  1870—1880 nm范围内吸收谱线及残差 (a)吸收谱线; (b)残差

    Fig. 14.  Absorption lines and corresponding residuals of water in 1870—1880 nm wavelength range: (a) Absorption lines; (b) residuals.

  • [1]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energ. Combust. Sci. 60 132

    [2]

    Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta B 106 45Google Scholar

    [3]

    丁武文, 孙利群, 衣路英 2017 物理学报 66 100702Google Scholar

    Ding W W, Sun L Q, Yi L Y 2017 Acta Phys. Sin. 66 100702Google Scholar

    [4]

    Wu Q, Wang F, Li M, Yan J 2017 Combust. Sci. Technol. 189 1571Google Scholar

    [5]

    Sur R, Sun K, Jeffries J B, Socha J G, Hanson R K 2015 Fuel 150 102Google Scholar

    [6]

    Tao B, Hu Z Y, Fan W, Wang S, Ye J F, Zhang Z R 2017 Opt. Express 25 A762Google Scholar

    [7]

    Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar

    [8]

    Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun. 346 53Google Scholar

    [9]

    Kranendonk L A, Caswell A W, Hagen C L, Neuroth C T, Shouse D T, Gord J R, Sanders S T 2009 J. Propul. Power 25 859Google Scholar

    [10]

    Ma L, Cai W, Caswell A W, Kraetschmer T, Sanders S T, Roy S, Gord J R 2009 Opt. Express 17 8602Google Scholar

    [11]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovt-seva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Ra. 130 4Google Scholar

    [12]

    聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏 2017 物理学报 66 204204Google Scholar

    Nie W, Kan R F, Xu Z Y, Yao L, Xia H H, Peng Y Q, Zhang B Q, He Y B 2017 Acta Phys. Sin. 66 204204Google Scholar

    [13]

    Refaat T F, Singh U N, Yu J, Petros M, Ismail S, Kavaya M J, Davis K J 2015 Appl. Opt. 54 1387Google Scholar

    [14]

    Gibert F, Flamant P H, Bruneau D, Loth C 2006 Appl. Opt. 45 4448Google Scholar

    [15]

    Jackson S D, King T A 1999 J. Lightwave Technol. 17 948Google Scholar

    [16]

    Jackson S D 2006 IEEE Photon. Technol. Lett. 18 1885Google Scholar

    [17]

    Jackson S D 2009 Laser Photon. Rev. 3 466Google Scholar

    [18]

    Stark A, Correia L, Teichmann M, Salewski S, Larsen C, Baev V M, Toschek P E 2003 Opt. Commun. 215 113Google Scholar

    [19]

    Young R J De, Barnes N P 2010 Appl. Opt. 49 562Google Scholar

    [20]

    Bremer K, Pal A, Yao S, Lewis E Sen R, Sun T, Grattan K T V 2013 Appl. Opt. 52 3957Google Scholar

    [21]

    陶蒙蒙, 陶波, 余婷, 王振宝, 冯国斌, 叶锡生 2016 红外与激光工程 45 1205002Google Scholar

    Tao M M, Tao B, Yu T, Wang Z B, Feng G B, Ye X S 2016 Infrar. Laser Eng. 45 1205002Google Scholar

    [22]

    Tao M M, Feng G B, Yu T, Ye X S, Wang Z B, Shen Y L, Zhao J 2018 Opt. Laser Technol. 100 176Google Scholar

    [23]

    Tao M M, Yu T, Chen H W, Shen Y L, Ye X S, Zhao J 2018 Laser Phys. 28 115108Google Scholar

  • [1] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器. 物理学报, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [2] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展. 物理学报, 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [3] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究. 物理学报, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [4] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量. 物理学报, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [5] 王前进, 孙鹏帅, 张志荣, 张乐文, 杨曦, 吴边, 庞涛, 夏滑, 李启勇. 混合气体测量中重叠吸收谱线交叉干扰的分离解析方法. 物理学报, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [6] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [7] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生. 物理学报, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [8] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [9] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [10] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [11] 张云刚, 刘如慧, 汪梅婷, 王允轩, 李占勋, 童凯. 漫反射立方腔单次反射平均光程的理论和实验研究. 物理学报, 2018, 67(1): 016102. doi: 10.7498/aps.67.20171808
    [12] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [13] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [14] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [15] 王敏锐, 蔡廷栋. 1.5μm处CO2与CO高温线强的实验分析与理论计算. 物理学报, 2015, 64(21): 213301. doi: 10.7498/aps.64.213301
    [16] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [17] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究. 物理学报, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [18] 张东, 张磊, 史久林, 石锦卫, 弓文平, 刘大禾. 受激布里渊散射的线宽压缩及时间相干性. 物理学报, 2012, 61(6): 064212. doi: 10.7498/aps.61.064212
    [19] 李素文, 谢品华, 刘文清, 司福祺, 李 昂, 彭夫敏. 发光二极管在差分吸收光谱系统中的应用研究. 物理学报, 2008, 57(3): 1963-1967. doi: 10.7498/aps.57.1963
    [20] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
计量
  • 文章访问数:  12122
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2019-11-01
  • 刊出日期:  2020-02-05

/

返回文章
返回