搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种双模压缩微波制备的相位锁定方案

魏天丽 吴德伟 杨春燕 罗均文 苗强 李响

引用本文:
Citation:

一种双模压缩微波制备的相位锁定方案

魏天丽, 吴德伟, 杨春燕, 罗均文, 苗强, 李响

A phase locking scheme of two-mode squeezed microwave preparation

Wei Tian-Li, Wu De-Wei, Yang Chun-Yan, Luo Jun-Wen, Miao Qiang, Li Xiang
PDF
HTML
导出引用
  • 相位锁定是双模压缩微波制备的关键问题之一. 针对基于超导180°混合环的制备方案相位稳定度不高且信息处理复杂等问题, 提出一种相位锁定方案. 对约瑟夫森参量放大器的信号输入进行相位调制, 输出的单模压缩微波与另一未调制的同频单模压缩微波在超导180°混合环内干涉, 实现双模压缩微波的制备与路径分离. 将未调制的单模压缩微波与一路双模压缩微波混频, 解调出相位调制信号可得到两路单模压缩微波的相对相位及误差, 将相位误差反馈于约瑟夫森参量放大器的抽运实现相对相位的锁定, 获得稳定的双模压缩输出. 本研究对高性能纠缠微波源的设计提供了理论参考.
    As the core of quantum entanglement, two-mode squeezing is manifested in cross-correlations of incompatible observables between two subsystems, which makes the two-mode squeezed microwave an ideal resource for applications in quantum communication, quantum illumination, and quantum microwave navigation. Currently the preparation scheme of two-mode squeezed microwave, based on the Josephson parametric amplifier (JPA) and a superconducting 180° hybrid ring coupler, proves to be the most efficient and excellent in quantum properties. Nevertheless, the difficult phase locking processing restricts the further improvement of entanglement. There is no effective solution but the dual-path receiver with phase stabilization measures, and the phase error reaches as high as 0.3°, which still does not meet the requirements for phase locking precision and entanglement stability. To overcome the academic obstacle, we propose a phase locking scheme to achieve a stable two-mode squeezed microwave. There are two JPAs used to separately generate single-mode squeezed microwaves, between which the difference lies in the fact that the input of one JPA is phase-modulated but the other is not. A superconducting 180° hybrid ring coupler is used to distribute the two single-mode squeezed microwaves into two output paths, which are two-mode squeezing if the squeezing directions of the two single-mode squeezed microwave are orthogonal. That is to say, the relative phase satisfies the condition $\theta = {\text{π}}/2$. By mixing the unmodulated single-mode squeezed microwave and one output of the superconducting 180° hybrid ring coupler, a relative phase is obtained in subsequent process. Proportional integral derivative (PID) controller is used as the input of phase error, and the output is used to adjust the pump phase of JPA, which is the key to phase locking and stable two-mode squeezing. The present research not only provides an effective strategy to achieve stable two-mode squeezed microwave, but also may attract more attention to the precisive measurement of two-mode squeezed microwave.
      通信作者: 杨春燕, ycy220@163.com
    • 基金项目: 国家自然科学基金(批准号: 61603413, 61573372)、陕西省自然科学基金(批准号: 2017JM6017)和空军工程大学校长基金(批准号: ZJK2018019, XZJY2018038)资助的课题
      Corresponding author: Yang Chun-Yan, ycy220@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61603413, 61573372), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No.2017JM6017), and the Principal Fund of Air Force Engineering University (Grant Nos. ZJK2018019, XZJY2018038)
    [1]

    Braunstein S L, Loock P V 2005 Rev. Mod. Phys. 77 513Google Scholar

    [2]

    Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [3]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [4]

    Liu C C, Wang D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 219Google Scholar

    [5]

    苗强, 李响, 吴德伟, 罗均文, 魏天丽, 朱浩男 2019 物理学报 68 070302Google Scholar

    Miao Q, Li X, Wu D W, Luo J W, Wei T L, Zhu H N 2019 Acta Phys. Sin. 68 070302Google Scholar

    [6]

    Hofheinz M, Huard B, Portier F 2016 C. R. Physique 17 679Google Scholar

    [7]

    Sanz M, las Heras U, García-Ripoll J J, Solano E, di Candia R 2017 Phys. Rev. Lett. 118 070803Google Scholar

    [8]

    Madsen L S, Usenko V C, Lassen M, Filip R, Andersen U L 2012 Nat. Commun. 3 1083Google Scholar

    [9]

    di Candia R, Fedorov K G, Zhong L, Felicetti S, Menzel E P, Sanz M, Deppe F, Marx A, Gross R, Solano E 2015 EPJ Quantum Technol. 2 25Google Scholar

    [10]

    las Heras U, di Candia R D, Fedorov K G, Deppe F, Sanz M, Solano E 2017 Sci. Rep. 7 9333Google Scholar

    [11]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [12]

    Li X, Wu D W, Miao Q, Zhu H N, Wei T L 2018 IEEE Photonics J. 10 6101107

    [13]

    Li X, Wu D W, Wei T L, Miao Q, Zhu H N, Yang C Y 2018 AIP Adv. 8 065217Google Scholar

    [14]

    Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2008 Nat. Phys. 4 929Google Scholar

    [15]

    Menzel E P, Candia R D, Deppe F, Eder P, Zhong L, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx1 A, Ihmig M, Gross R 2012 Phys. Rev. Lett. 109 250502Google Scholar

    [16]

    Fedorov K G, Pogorzalek S, Heras U L, Sanz M, Yard P, Eder P, Fischer M, Goetz J, Xie1 E, Inomata K, Nakamura Y, di Candia R, Solano E, Marx1 A, Deppe1 F, Gross R 2018 Sci. Rep. 8 6416Google Scholar

    [17]

    Pogorzalek S, Fedorov K G, Xu M, Parra-Rodriguez A, Sanz M, Fischer M, Xie E, Inomata K, Nakamura Y, Solano E, Marx1 A, Deppe1 F, Gross R 2019 Nature Commun. 10 2604Google Scholar

    [18]

    Li P B, Li F L 2011 Opt. Commun. 284 294Google Scholar

    [19]

    Ockeloen-Korppi C F., Damskägg E, Pirkkalainen J M, Heikkilä T T, Massel F, Sillanpää M A 2017 Phys. Rev. Lett. 118 103601Google Scholar

    [20]

    Abdi M, Tombesi P, Vitali D 2015 Ann. Phys. 527 139Google Scholar

    [21]

    Sete E A, Eleuch H 2014 Phys. Rev. A 89 013841Google Scholar

    [22]

    Marković D, Pillet J D, Flurin E, Roch N, Huard B 2019 Phys. Rev. Applied 12 024034Google Scholar

    [23]

    Duan L M, Giedke G, Cirac J I, Zoller P 1999 Phys. Rev. Lett. 84 2722

    [24]

    Li X, Wu D W, Zhu H N, Miao Q, Wei T L 2018 Results Phys. 11 920Google Scholar

  • 图 1  双模压缩微波制备方案原理图

    Fig. 1.  Schematic of two-mode squeezed microwave preparation scheme.

    图 2  双模压缩微波制备的相位锁定方案原理图

    Fig. 2.  Schematic of phase locking scheme for two-mode squeezed microwave preparation.

    图 3  扫描$\theta $时的鉴频曲线.

    Fig. 3.  Frequency discrimination curve when scanning $\theta $.

    图 4  相位锁定示意图.

    Fig. 4.  Schematic of phase locking process.

    图 5  相位误差与输出信噪比及自身相位值的变化关系

    Fig. 5.  Variance of $\text{δ}\theta $ versus ${s/n}$ and $\theta $.

    图 6  ${\text δ}{E_N}$与相位误差${\text δ}\theta $及压缩度r的关系

    Fig. 6.  Variance of ${\text δ}{E_N}$ versus ${\text δ}\theta $ and r.

    图 7  ${\text δ}{E_N}/{E_N}$与相位误差${\rm{\delta }}\theta $及压缩度r的关系图

    Fig. 7.  Variance of ${{{\rm{\delta }}{E_N}}/{{E_N}}}$ versus ${\rm{\delta }}\theta $ and r.

  • [1]

    Braunstein S L, Loock P V 2005 Rev. Mod. Phys. 77 513Google Scholar

    [2]

    Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [3]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [4]

    Liu C C, Wang D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 219Google Scholar

    [5]

    苗强, 李响, 吴德伟, 罗均文, 魏天丽, 朱浩男 2019 物理学报 68 070302Google Scholar

    Miao Q, Li X, Wu D W, Luo J W, Wei T L, Zhu H N 2019 Acta Phys. Sin. 68 070302Google Scholar

    [6]

    Hofheinz M, Huard B, Portier F 2016 C. R. Physique 17 679Google Scholar

    [7]

    Sanz M, las Heras U, García-Ripoll J J, Solano E, di Candia R 2017 Phys. Rev. Lett. 118 070803Google Scholar

    [8]

    Madsen L S, Usenko V C, Lassen M, Filip R, Andersen U L 2012 Nat. Commun. 3 1083Google Scholar

    [9]

    di Candia R, Fedorov K G, Zhong L, Felicetti S, Menzel E P, Sanz M, Deppe F, Marx A, Gross R, Solano E 2015 EPJ Quantum Technol. 2 25Google Scholar

    [10]

    las Heras U, di Candia R D, Fedorov K G, Deppe F, Sanz M, Solano E 2017 Sci. Rep. 7 9333Google Scholar

    [11]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [12]

    Li X, Wu D W, Miao Q, Zhu H N, Wei T L 2018 IEEE Photonics J. 10 6101107

    [13]

    Li X, Wu D W, Wei T L, Miao Q, Zhu H N, Yang C Y 2018 AIP Adv. 8 065217Google Scholar

    [14]

    Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2008 Nat. Phys. 4 929Google Scholar

    [15]

    Menzel E P, Candia R D, Deppe F, Eder P, Zhong L, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx1 A, Ihmig M, Gross R 2012 Phys. Rev. Lett. 109 250502Google Scholar

    [16]

    Fedorov K G, Pogorzalek S, Heras U L, Sanz M, Yard P, Eder P, Fischer M, Goetz J, Xie1 E, Inomata K, Nakamura Y, di Candia R, Solano E, Marx1 A, Deppe1 F, Gross R 2018 Sci. Rep. 8 6416Google Scholar

    [17]

    Pogorzalek S, Fedorov K G, Xu M, Parra-Rodriguez A, Sanz M, Fischer M, Xie E, Inomata K, Nakamura Y, Solano E, Marx1 A, Deppe1 F, Gross R 2019 Nature Commun. 10 2604Google Scholar

    [18]

    Li P B, Li F L 2011 Opt. Commun. 284 294Google Scholar

    [19]

    Ockeloen-Korppi C F., Damskägg E, Pirkkalainen J M, Heikkilä T T, Massel F, Sillanpää M A 2017 Phys. Rev. Lett. 118 103601Google Scholar

    [20]

    Abdi M, Tombesi P, Vitali D 2015 Ann. Phys. 527 139Google Scholar

    [21]

    Sete E A, Eleuch H 2014 Phys. Rev. A 89 013841Google Scholar

    [22]

    Marković D, Pillet J D, Flurin E, Roch N, Huard B 2019 Phys. Rev. Applied 12 024034Google Scholar

    [23]

    Duan L M, Giedke G, Cirac J I, Zoller P 1999 Phys. Rev. Lett. 84 2722

    [24]

    Li X, Wu D W, Zhu H N, Miao Q, Wei T L 2018 Results Phys. 11 920Google Scholar

  • [1] 张秀芳, 马军, 徐莹, 任国栋. 光电管耦合FitzHugh-Nagumo神经元的同步. 物理学报, 2021, 70(9): 090502. doi: 10.7498/aps.70.20201953
    [2] 王帅, 眭永兴, 孟祥国. 光子增加双模压缩真空态在马赫-曾德尔干涉仪相位测量中的应用. 物理学报, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [3] 魏天丽, 吴德伟, 杨春燕, 罗均文, 李响, 朱浩男. 基于光子计数的纠缠微波压缩角锁定. 物理学报, 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [4] 侯佳佳, 赵刚, 谭巍, 邱晓东, 贾梦源, 马维光, 张雷, 董磊, 冯晓霞, 尹王保, 肖连团, 贾锁堂. 基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究. 物理学报, 2016, 65(23): 234204. doi: 10.7498/aps.65.234204
    [5] 孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖. 光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合. 物理学报, 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [6] 张岩, 于旭东, 邸克, 李卫, 张靖. 压缩态光场平衡零拍探测的位相锁定. 物理学报, 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [7] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [8] 宋军, 范洪义, 周军. 双模压缩数态光场的Wigner函数及其特性. 物理学报, 2011, 60(11): 110302. doi: 10.7498/aps.60.110302
    [9] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射. 物理学报, 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [10] 薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪. 基于空间滤波的光纤激光被动相位锁定技术研究. 物理学报, 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [11] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究. 物理学报, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [12] 易智, 何广强, 曾贵华. 基于双模压缩态的量子投票协议. 物理学报, 2009, 58(5): 3166-3172. doi: 10.7498/aps.58.3166
    [13] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [14] 陈子伦, 周 朴, 许晓军, 侯 静, 姜宗福. 谱线和耦合系数对光纤激光器相互注入锁定的影响. 物理学报, 2008, 57(6): 3588-3592. doi: 10.7498/aps.57.3588
    [15] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [16] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案. 物理学报, 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
    [17] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态. 物理学报, 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
    [18] 厉江帆, 黄春佳, 姜宗福, 黄祖洪. 含时耦合谐振子系统的时间演化与双模压缩态. 物理学报, 2005, 54(2): 522-529. doi: 10.7498/aps.54.522
    [19] 田永红, 彭金生. 双模压缩真空场作用下二能级原子的偶极压缩与相干俘获. 物理学报, 1999, 48(11): 2060-2069. doi: 10.7498/aps.48.2060
    [20] 李洪才. 双模相位问题. 物理学报, 1997, 46(7): 1259-1266. doi: 10.7498/aps.46.1259
计量
  • 文章访问数:  7508
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 修回日期:  2019-10-14
  • 刊出日期:  2020-02-05

/

返回文章
返回