搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1.5μm处CO2与CO高温线强的实验分析与理论计算

王敏锐 蔡廷栋

引用本文:
Citation:

1.5μm处CO2与CO高温线强的实验分析与理论计算

王敏锐, 蔡廷栋

Theoretical and experimental study on line intensities of CO2 and CO transitions near 1.5 μm at high temperatures

Wang Min-Rui, Cai Ting-Dong
PDF
导出引用
  • 本文在采用乘积近似方法计算二氧化碳、一氧化碳分子总的配分函数(其中分子的振动配分函数采用谐振子近似, 转动配分函数采用非刚性转子模型, 并考虑了离心扭曲修正)的基础上, 利用所得配分函数和振动跃迁矩平方的实验值以及Herman-Wallis系数, 计算了1.5 μm 附近二氧化碳30012–00001跃迁带和一氧化碳3–0跃迁带在300–6000 K温度范围内部分温度下的吸收线强; 为验证计算方法和结果的准确性, 在基于可调谐二极管激光吸收光谱技术搭建的高温测量系统中, 对300–800 K温度范围内部分谱线线强进行了测量, 并把计算结果、测量结果及HITRAN数据库中对应数据进行了对比, 发现相对偏差小于3%, 证明了本方法的有效性, 同时计算及测量所得高温线强数据可对HITRAN数据库进行有效的校正和补充.
    Accurate spectroscopic parameters of probed species, especially the line strengths at high temperatures, are important for combustion diagnosis based on tunable diode laser absorption spectroscopy (TDLAS). However, most of the line strengths in databases are measured at normal atmospheric temperature and calculated at high temperatures. For example, the mostly used HITRAN database focuses on atmospheric conditions where the temperature ranging from 200-350 K. The high-temperature parameters in HITRAN database are obtained by calculation and the temperatures are limited to 3000 K. In this paper the line strengths of 30012-00001 transition band of CO2 and 3-0 transition band of CO at normal temperature (300 K) and some high temperatures (400-6000 K) are calculated using our calculated partition function and experimental transition moment squared and Herman-Waills factor coefficients. The total internal partition sums (TIPS) are calculated for CO2 and CO with the product approximation of the vibrational and the rotational partition functions. The vibrational partition function is calculated in harmonic oscillator approximation. For rotational partition sums, the centrifugal distortion corrections are taken into consideration. In order to validate the calculation, a high-temperature measurement system based on TDLAS is developed using a DFB diode laser near 1.573 μm. High-resolution absorption spectra of CO2 and CO can be recorded in a heated cell as a function of temperature and pressure. The 9 lines of CO2 30012-00001 band and 2 lines of CO 3-0 band have been measured by means of direct absorption spectroscopy in the temperature range of 300-800 K. The corresponding line strengths are inferred from the measured direct absorption spectrum. The calculated result and experimental data are compared with the HITRAN values. The calculated and measured data agree well with the existing databases (HITRAN 2012), the discrepancies being less than 3% for most of the probed transitions. All the results confirm the validity of the calculation of total partition function and the line strengths calculated. The variation of the line strength as a function of temperature for a certain transition is also discussed. While the lower state energy determines the equilibrium molecular population in the unabsorbing state as a function of temperature, how the line strength of a particular transition varies with temperature can also be controlled.
      通信作者: 蔡廷栋, caitingdong@126.com
    • 基金项目: 国家自然科学基金(批准号: 61475068, 11104237)和江苏高校优势学科建设工程项目资助的课题.
      Corresponding author: Cai Ting-Dong, caitingdong@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475068, 11104237), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.
    [1]

    Banwell C N, Mccash E M 1994 Fundamentals of Molecular Spectroscopy (4th edition)(New York: McGraw-Hill Higher Education) p21

    [2]

    Guelachvili G 1979 J. Mol. Spectrosc. 75 251

    [3]

    Picqué N, Guelachvili G, Dana V, Mandin J Y 2000 J. Mol. Struct. 517 427

    [4]

    Chackerian C, Freedman R., Giver L P, Brown L R 2001 J. Mol. Spectrosc. 210 119

    [5]

    Ogilvie J F, Cheah S L, Lee Y P, Sauer S P2002 Theor. Chem. Acc. 108 85

    [6]

    Campargue A, Karlovets E V, Kassi S 2015 J. Quant. Spectrosc. Radiat. Transfer 154 113

    [7]

    Lamouroux J, Gamache RR, Laraia A L, Hartmann J, Boulet C 2012 J. Quant. Spectrosc. Radiat.Transfer 113 991

    [8]

    Predoi-Cross A, Liu W, Murphy R, Povey C, Gamache RR, Laraia A L, McKellar A RW, Hurtmans D R, Devi V M 2010 J. Quant. Spectrosc. Radiat. Transfer 111 1065

    [9]

    Toth RA, Hunt RH, Plyler E K 1971 J. Mol. Spectrosc. 38 107

    [10]

    Boudjaadar D, Mandin J Y, Dana V, Picqué N, Guelachvili G 2006 J. Mol. Spectrosc. 236 158

    [11]

    Miller C E, Brown L R 2004 J. Mol. Spectrosc. 228 329

    [12]

    Teffo J L, Claveau C, Valentin A 1998 J. Quant. Spectrosc. Radiat. Transfer 59 151

    [13]

    Claveau C, Teffo J L, Hurtmans D, Valentin A 1998 J. Mol. Spectrosc. 189 153

    [14]

    Toth RA, Brown L R, Miller C E, Devi V M, Benner D C 2006 J. Mol. Spectrosc. 239 221

    [15]

    Song X S, Yang X D, Guo Y D, Wang J, Cheng X L, Ling-Hu L F 2007 Commun. Theor. Phys. 47 892

    [16]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache RR, Harrison J J, Hartmann J, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Roy RJ L, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [17]

    Chen W D, Kosterev A A, Tittel F K, Gao X M, Zhao W X 2008 Appl. Phys. B 90 311

    [18]

    Xia H, Dong F Z, Wu B, Zhang Z R, Pang T, Sun PS, Cui X J, Han L, Wang Y 2015 Chin. Phys. B 24 034204

    [19]

    Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803

    [20]

    Gamache RR, Kennedy S, Hawkins R, Rothman L S 2000 J. Mol. Struct. 517 407

    [21]

    Herzberg G 1947 Molecular Spectra and Molecular StructureII. Infrared and Raman Spectra of Polyatomic Molecules (New York: Van Nostrand) p76

    [22]

    Norton RH, Rinsland C P 1991 Appl. Opt. 30 389

    [23]

    McDowell RS 1988 J. Chem. Phys. 88 356

    [24]

    Song X S, Ling-Hu RF, Li D H, Yan A Y 2007 Chin J. At. Mol. Phys.24 647

    [25]

    Song X S, Cheng X L, Yang X D, Ling-Hu RF 2007 Acta Phys. Sin. 56 4428 (in Chinese) [宋晓书, 程新路, 杨向东, 令狐荣锋 2007 物理学报 56 4428]

    [26]

    Rachet F, Margottinmaclou M, Elazizi M, Henry A, Valentin A 1994 J. Mol. Spectrosc. 164 196

    [27]

    Liu X 2006 Ph. D. Dissertation (California: Stanford University)

  • [1]

    Banwell C N, Mccash E M 1994 Fundamentals of Molecular Spectroscopy (4th edition)(New York: McGraw-Hill Higher Education) p21

    [2]

    Guelachvili G 1979 J. Mol. Spectrosc. 75 251

    [3]

    Picqué N, Guelachvili G, Dana V, Mandin J Y 2000 J. Mol. Struct. 517 427

    [4]

    Chackerian C, Freedman R., Giver L P, Brown L R 2001 J. Mol. Spectrosc. 210 119

    [5]

    Ogilvie J F, Cheah S L, Lee Y P, Sauer S P2002 Theor. Chem. Acc. 108 85

    [6]

    Campargue A, Karlovets E V, Kassi S 2015 J. Quant. Spectrosc. Radiat. Transfer 154 113

    [7]

    Lamouroux J, Gamache RR, Laraia A L, Hartmann J, Boulet C 2012 J. Quant. Spectrosc. Radiat.Transfer 113 991

    [8]

    Predoi-Cross A, Liu W, Murphy R, Povey C, Gamache RR, Laraia A L, McKellar A RW, Hurtmans D R, Devi V M 2010 J. Quant. Spectrosc. Radiat. Transfer 111 1065

    [9]

    Toth RA, Hunt RH, Plyler E K 1971 J. Mol. Spectrosc. 38 107

    [10]

    Boudjaadar D, Mandin J Y, Dana V, Picqué N, Guelachvili G 2006 J. Mol. Spectrosc. 236 158

    [11]

    Miller C E, Brown L R 2004 J. Mol. Spectrosc. 228 329

    [12]

    Teffo J L, Claveau C, Valentin A 1998 J. Quant. Spectrosc. Radiat. Transfer 59 151

    [13]

    Claveau C, Teffo J L, Hurtmans D, Valentin A 1998 J. Mol. Spectrosc. 189 153

    [14]

    Toth RA, Brown L R, Miller C E, Devi V M, Benner D C 2006 J. Mol. Spectrosc. 239 221

    [15]

    Song X S, Yang X D, Guo Y D, Wang J, Cheng X L, Ling-Hu L F 2007 Commun. Theor. Phys. 47 892

    [16]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache RR, Harrison J J, Hartmann J, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Roy RJ L, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [17]

    Chen W D, Kosterev A A, Tittel F K, Gao X M, Zhao W X 2008 Appl. Phys. B 90 311

    [18]

    Xia H, Dong F Z, Wu B, Zhang Z R, Pang T, Sun PS, Cui X J, Han L, Wang Y 2015 Chin. Phys. B 24 034204

    [19]

    Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803

    [20]

    Gamache RR, Kennedy S, Hawkins R, Rothman L S 2000 J. Mol. Struct. 517 407

    [21]

    Herzberg G 1947 Molecular Spectra and Molecular StructureII. Infrared and Raman Spectra of Polyatomic Molecules (New York: Van Nostrand) p76

    [22]

    Norton RH, Rinsland C P 1991 Appl. Opt. 30 389

    [23]

    McDowell RS 1988 J. Chem. Phys. 88 356

    [24]

    Song X S, Ling-Hu RF, Li D H, Yan A Y 2007 Chin J. At. Mol. Phys.24 647

    [25]

    Song X S, Cheng X L, Yang X D, Ling-Hu RF 2007 Acta Phys. Sin. 56 4428 (in Chinese) [宋晓书, 程新路, 杨向东, 令狐荣锋 2007 物理学报 56 4428]

    [26]

    Rachet F, Margottinmaclou M, Elazizi M, Henry A, Valentin A 1994 J. Mol. Spectrosc. 164 196

    [27]

    Liu X 2006 Ph. D. Dissertation (California: Stanford University)

  • [1] 胡敏丽, 房凡, 樊群超, 范志祥, 李会东, 付佳, 谢锋. NO+离子系统热力学性质的理论研究. 物理学报, 2023, 72(16): 165101. doi: 10.7498/aps.72.20230541
    [2] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量. 物理学报, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [3] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究. 物理学报, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [4] 王前进, 孙鹏帅, 张志荣, 张乐文, 杨曦, 吴边, 庞涛, 夏滑, 李启勇. 混合气体测量中重叠吸收谱线交叉干扰的分离解析方法. 物理学报, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [5] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用. 物理学报, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [6] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [7] 张云刚, 刘如慧, 汪梅婷, 王允轩, 李占勋, 童凯. 漫反射立方腔单次反射平均光程的理论和实验研究. 物理学报, 2018, 67(1): 016102. doi: 10.7498/aps.67.20171808
    [8] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [9] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究. 物理学报, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [10] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度. 物理学报, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [11] 陈玖英, 刘建国, 何亚柏, 王辽, 冮强, 许振宇, 姚路, 袁松, 阮俊, 何俊峰, 戴云海, 阚瑞峰. 2.0 μm处CO2高温谱线参数测量研究. 物理学报, 2013, 62(22): 224206. doi: 10.7498/aps.62.224206
    [12] 伍冬兰, 万慧军, 谢安东, 程新路, 杨向东. 二氧化硅分子配分函数的研究. 物理学报, 2009, 58(11): 7410-7413. doi: 10.7498/aps.58.7410
    [13] 宋晓书, 余春日, 闫安英, 程新路, 杨向东. 对称陀螺分子NH3的高温谱线强度研究. 物理学报, 2009, 58(1): 223-228. doi: 10.7498/aps.58.223
    [14] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [15] 宋晓书, 令狐荣锋, 吕 兵, 程新路, 杨向东. 渐近非对称陀螺分子H122C16O的高温光谱. 物理学报, 2008, 57(6): 3440-3445. doi: 10.7498/aps.57.3440
    [16] 宋晓书, 程新路, 杨向东, 令狐荣锋. 氧化亚氮3000—0200和1001—0110跃迁带在高温下的线强度. 物理学报, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [17] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
    [18] 朱志艳, 朱正和, 高 涛, 蒋 刚. 金等离子体中Au48+—Au52+平衡分布的统计热力学研究 . 物理学报, 2004, 53(10): 3330-3335. doi: 10.7498/aps.53.3330
    [19] 贾金锋, 吴凯, 王德峥, 吕斯骅, 赵汝光, 吴思诚. 氧和一氧化碳在有序合金表面Pd{001}c(2×2)-Mn上的共吸附:生成二氧化碳的微观机制. 物理学报, 1995, 44(2): 251-258. doi: 10.7498/aps.44.251
    [20] 王德懋, 许永焕, 张宗燧. 二元固溶体的配分函数. 物理学报, 1957, 13(6): 525-542. doi: 10.7498/aps.13.525
计量
  • 文章访问数:  4624
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-01
  • 修回日期:  2015-07-10
  • 刊出日期:  2015-11-05

/

返回文章
返回