搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量

管林强 邓昊 姚路 聂伟 许振宇 李想 臧益鹏 胡迈 范雪丽 杨晨光 阚瑞峰

引用本文:
Citation:

基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量

管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰

Measurement of middle infrared spectroscopic parameters of carbon disulfide based on tunable diode laser absorption spectroscopy

Guan Lin-Qiang, Deng Hao, Yao Lu, Nie Wei, Xu Zhen-Yu, Li Xiang, Zang Yi-Peng, Hu Mai, Fan Xue-Li, Yang Chen-Guang, Kan Rui-Feng
PDF
HTML
导出引用
  • 采用$4.6\;{\text{μ}}{\rm{m}}$附近的量子级联激光器作为光源, 搭建了一套二硫化碳(CS2)吸收光谱测量系统, 结合可调谐二极管激光吸收光谱技术, 对光谱范围为2178.99—2180.79 cm–1的CS2吸收光谱展开了深入研究, 重点测量了2180.5—2180.74 cm–1的四条吸收谱线, 利用基于非线性最小二乘的多元线性回归算法对CS2吸收光谱进行拟合, 精确得到了该范围内谱线的中心波长、线强以及空气展宽系数等光谱参数. 经计算, 对应谱线线强不确定度小于5%, 空气展宽系数不确定度小于15%, 这个结果可作为免标定CS2红外光谱探测的基础光谱参数, 对痕量CS2气体传感具有重要意义. 未来我们将进一步开展2170—2200 cm–1整个谱段的CS2谱线参数的测量, 以期填补其在HITRAN和GEISA 数据库光谱参数的空白.
    Carbon disulfide (CS2) is a toxic volatile sulfur compound with flammability and harmfulness, which can seriously harm the human health and threaten the industrial production safety. Therefore, it is of high importance for monitoring CS2 concentration in the air. Tunable diode laser absorption spectroscopy is very suitable for the detection of trace gas for it possesses high sensitivity and fast response. And the precise knowledge of spectroscopic parameters is essential for deducing the CS2 concentration. However, primary database including HITRAN and GEISA lacks spectroscopic parameters of CS2. Thus, to address this issue, a measurement system of absorption spectrum is built for determining spectroscopic parameters by using a quantum cascade laser with narrow linewidth and high output power operating near 4.6 um as a light source. In this paper, direct absorption spectroscopy is used to measure the CS2 absorption spectra under different sample pressures and the environment temperature is controlled at 296 K, which is adjusted by an air conditioner. We intensively study the absorption spectra of CS2 in a range between 2178.99 and 2180.79 cm–1.According to the relevant reports and the need of actual measurement, four absorption lines are mainly measured in a range of 2180.5−2180.74 cm–1. Combining with the multiple linear regression algorithm based on the nonlinear least-square method and Beer-Lambert law, the integrated area and Lorentz line width of measured CS2 absorption spectrum can be determined. Then the spectroscopic parameters including absorption line intensity and air broadening coefficient are precisely obtained by linearly fitting the integrated areas and Lorentz line widths of CS2 absorption spectra at different pressures. Moreover, nitrous oxide (N2O) absorption spectrum with high spectral resolution is measured to calibrate the central position of carbon disulfide absorption line according to its known line position extracted from HITRAN database and the results obtained by etalon. The calculated results show that the uncertainty of line intensity and air broadening coefficient are less than 5% and 15%, respectively. It demonstrates that the measured spectroscopic parameters of four absorption lines for this study can be recorded in the database of HITRAN, which is very important for trace gas sensing of CS2. In the future, we will further improve the system for measuring CS2 absorption line parameters to fill in the gaps in their spectral parameters in HITRAN and GEISA databases.
      通信作者: 杨晨光, cgyang@aiofm.ac.cn ; 阚瑞峰, kanruifeng@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFC201100)资助的课题.
      Corresponding author: Yang Chen-Guang, cgyang@aiofm.ac.cn ; Kan Rui-Feng, kanruifeng@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC0201100).
    [1]

    Wang B, Sivret E C, Parcsi G, Stuetz R M 2015 Talanta 137 71Google Scholar

    [2]

    Du Z, Li J, Cao X, Gao H, Ma Y 2017 Sensor. Actuat. B: Chem. 247 384Google Scholar

    [3]

    Kilo S, Zonnur N, Uter W, Göen T, Drexler H 2015 Ann. Occup. Hyg. 59 972Google Scholar

    [4]

    Wang L, Zhang Y, Zhou X, Zhang Z 2018 Appl. Opt. 57 21

    [5]

    Kamboures M A, Blake D R, Cooper D M, Newcomb R L, Barker M, Larson J K, Rowland F S 2005 PANS 102 15762Google Scholar

    [6]

    Rochette P, Jackson M, Aubourg C 1992 Rev. Geophys. 30 209Google Scholar

    [7]

    陈祥 2018 博士学位论文 (合肥: 中国科学技术大学)

    Chen X 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [8]

    Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar

    [9]

    Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009 J. Quant. Spectrosc. Radiat. Transfer. 110 347Google Scholar

    [10]

    Buchholz B, Böse N, Ebert V 2014 Appl. Phys. B 116 883Google Scholar

    [11]

    Nwaboh J A, Werhahn O, Ortwein P, Schiel D, Ebert V 2012 Meas. Sci. Technol. 24 015202

    [12]

    Sehnert S S, Jiang L, Burdick J F, Risby T H 2002 Biomarkers 7 174Google Scholar

    [13]

    Blanquet G, Daoust L, Walrand J, Bredohl H, Dubois I, Fayt A 2006 J. Mol. Struc. 780 171

    [14]

    Sirgy M J, Grzeskowiak S, Rahtz D 2007 Soc. Indic. Res. 80 343Google Scholar

    [15]

    魏敏 2017 博士学位论文(合肥: 中国科学技术大学)

    Wei M 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [16]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553Google Scholar

    [17]

    Chin M, Davis D D 1993 Global Biogeochem. Cy. 7 321Google Scholar

    [18]

    Zumkehr A, Hilton T W, Whelan M, Smith S, Kuai L, Worden J, Campbell J E 2018 Atmos. Environ. 183 11Google Scholar

    [19]

    Sharpe S W, Johnson T J, Sams R L, Chu P M, Rhoderick G C, Johnson P A 2004 Appl. Spectrosc. 58 1452Google Scholar

    [20]

    聂伟, 阚瑞峰, 许振宇, 姚路, 夏辉辉, 彭于权, 张步强, 何亚柏 2017 物理学报 66 204204Google Scholar

    Nie W, Kan R F, Xu Z Y, Yao L, Xia H H, Peng Y Q, Zhang B Q, He Y B 2017 Acta Phys. Sin. 66 204204Google Scholar

    [21]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏辉辉, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar

  • 图 1  CS2吸收光谱测量实验装置结构图

    Fig. 1.  Experimental schematic of CS2 tunable diode laser sensor system.

    图 2  PNNL数据库中CS2吸收光谱

    Fig. 2.  The CS2 absorption spectra obtained from PNNL database.

    图 3  N2O吸收光谱信号和标准具干涉条纹

    Fig. 3.  The measured N2O absorption spectrum signal and obtained interference fringes by optical etalon.

    图 4  2180.65676, 2180.69443, 2180.54844和2180.55578 cm–1处CS2 Voigt线性拟合结果及残差

    Fig. 4.  Voigt fitted line and residual of the CS2 spectrum at 2180.65676, 2180.69443, 2180.54844, and 2180.55578 cm–1, respectively.

    图 5  2180.65676, 2180.69443, 2180.54844和2180.55578 cm–1处CS2 线强线性拟合结果

    Fig. 5.  The linear fittd results of line-strength of the CS2 at 2180.65676, 2180.69443, 2180.54844, and 2180.55578 cm–1.

    图 6  2180.65676, 2180.69443, 2180.54844和2180.55578 cm–1处含1% CS2的混合气体的拟合结果

    Fig. 6.  The Voigt fitted results of mixed gas containing 1% CS2 spectrum at 2180.65676, 2180.69443, 2180.54844, and 2180.55578 cm–1, respectively.

    图 7  2180.65676, 2180.69443, 2180.54844和2180.55578 cm–1处不同压力的洛伦兹线宽

    Fig. 7.  Linear fit of Lorenz linewidth for different pressures at 2180.65676, 2180.69443, 2180.54844, and 2180.55578 cm–1, respectively.

    表 1  计算得到线强值、不确定度以及空气展宽值和不确定度

    Table 1.  The calculated spectroscopic parameters including line-strengths, air broadening coefficients, and the corresponding uncertainty.

    ${\rm{\nu }_0}/{\rm{c}}{{\rm{m}}^{ - 1}}$
    S(T0)/cm·molecule–1Uncertainty/%Air broadening/cm–1·atm–1Uncertainty/%
    2180.548449.19 × 10–221.7920.0870.336
    2180.555781.97 × 10–214.0550.0923.384
    2180.656762.24 × 10–214.5370.1037.098
    2180.694431.11 × 10–212.2320.08614.687
    下载: 导出CSV
  • [1]

    Wang B, Sivret E C, Parcsi G, Stuetz R M 2015 Talanta 137 71Google Scholar

    [2]

    Du Z, Li J, Cao X, Gao H, Ma Y 2017 Sensor. Actuat. B: Chem. 247 384Google Scholar

    [3]

    Kilo S, Zonnur N, Uter W, Göen T, Drexler H 2015 Ann. Occup. Hyg. 59 972Google Scholar

    [4]

    Wang L, Zhang Y, Zhou X, Zhang Z 2018 Appl. Opt. 57 21

    [5]

    Kamboures M A, Blake D R, Cooper D M, Newcomb R L, Barker M, Larson J K, Rowland F S 2005 PANS 102 15762Google Scholar

    [6]

    Rochette P, Jackson M, Aubourg C 1992 Rev. Geophys. 30 209Google Scholar

    [7]

    陈祥 2018 博士学位论文 (合肥: 中国科学技术大学)

    Chen X 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [8]

    Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar

    [9]

    Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009 J. Quant. Spectrosc. Radiat. Transfer. 110 347Google Scholar

    [10]

    Buchholz B, Böse N, Ebert V 2014 Appl. Phys. B 116 883Google Scholar

    [11]

    Nwaboh J A, Werhahn O, Ortwein P, Schiel D, Ebert V 2012 Meas. Sci. Technol. 24 015202

    [12]

    Sehnert S S, Jiang L, Burdick J F, Risby T H 2002 Biomarkers 7 174Google Scholar

    [13]

    Blanquet G, Daoust L, Walrand J, Bredohl H, Dubois I, Fayt A 2006 J. Mol. Struc. 780 171

    [14]

    Sirgy M J, Grzeskowiak S, Rahtz D 2007 Soc. Indic. Res. 80 343Google Scholar

    [15]

    魏敏 2017 博士学位论文(合肥: 中国科学技术大学)

    Wei M 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [16]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553Google Scholar

    [17]

    Chin M, Davis D D 1993 Global Biogeochem. Cy. 7 321Google Scholar

    [18]

    Zumkehr A, Hilton T W, Whelan M, Smith S, Kuai L, Worden J, Campbell J E 2018 Atmos. Environ. 183 11Google Scholar

    [19]

    Sharpe S W, Johnson T J, Sams R L, Chu P M, Rhoderick G C, Johnson P A 2004 Appl. Spectrosc. 58 1452Google Scholar

    [20]

    聂伟, 阚瑞峰, 许振宇, 姚路, 夏辉辉, 彭于权, 张步强, 何亚柏 2017 物理学报 66 204204Google Scholar

    Nie W, Kan R F, Xu Z Y, Yao L, Xia H H, Peng Y Q, Zhang B Q, He Y B 2017 Acta Phys. Sin. 66 204204Google Scholar

    [21]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏辉辉, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar

  • [1] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量. 物理学报, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [2] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究. 物理学报, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [3] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究. 物理学报, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [4] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用. 物理学报, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [5] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究. 物理学报, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [6] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [7] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体. 物理学报, 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [8] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性. 物理学报, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [9] 周超, 张磊, 李劲松. 基于单个量子级联激光器的大气多组分测量方法. 物理学报, 2017, 66(9): 094203. doi: 10.7498/aps.66.094203
    [10] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [11] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究. 物理学报, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [12] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [13] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现. 物理学报, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [14] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [15] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究. 物理学报, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [16] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [17] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究. 物理学报, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [18] 林桂江, 周志文, 赖虹凯, 李 成, 陈松岩, 余金中. Si/SiGe量子级联激光器的能带设计. 物理学报, 2007, 56(7): 4137-4142. doi: 10.7498/aps.56.4137
    [19] 张礼杰, 雷 鸣, 王宇明, 李建立, 孙 彧, 刘景和. Yb3+掺杂KY(WO4)2激光晶体生长、结构与光谱分析. 物理学报, 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [20] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
计量
  • 文章访问数:  8524
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-01-22
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回