搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NO+离子系统热力学性质的理论研究

胡敏丽 房凡 樊群超 范志祥 李会东 付佳 谢锋

引用本文:
Citation:

NO+离子系统热力学性质的理论研究

胡敏丽, 房凡, 樊群超, 范志祥, 李会东, 付佳, 谢锋

Theoretical study on macroscopic thermodynamic properties of NO+ ion system

Hu Min-Li, Fang Fan, Fan Qun-Chao, Fan Zhi-Xiang, Li Hui-Dong, Fu Jia, Xie Feng
PDF
HTML
导出引用
  • 基于课题组前期获得的研究双原子分子某电子态完全势能函数改进后的Hulburt-Hirschfelder (improved Hulburt-Hirschfelder, IHH)势能模型, 结合实验测量得到的光谱常数和Rydberg-Klein-Rees (RKR)光谱数据, 对NO+离子基态包含离解区在内的全程势能曲线进行研究. 利用获得的完全势能曲线数值求解一维薛定谔方程, 得到了体系包含高激发态在内的振转能级, 并以此为基础计算获得体系总的内部配分函数, 最后借助量子统计系综理论计算NO+离子系统在100—6000 K温度内的摩尔热容、摩尔熵、摩尔焓和约化摩尔吉布斯自由能. 对NO+离子系统的研究结果表明, IHH势模型同样也适用于离子系统, 计算的势能曲线与实验数据吻合良好, 其精度优于HH势和MRCI/aug-cc-pV6Z势, 且预测的热力学性质较HH势模型更接近实验值. 本文提出的研究方法为通过双原子离子微观信息获取系统宏观热力学性质提供了一条新的有效途径.
    NO+ is one of the most important ions in the atmospheric ionosphere and ionospheric phenomena such as auroras, and is one of the most stable diatomic cations existing in interstellar clouds. It is crucial to understand the thermodynamic properties of NO+ ion for exploring the composition of interstellar gas. To obtain macroscopic thermodynamic properties of diatomic molecules and ions, a practical theoretical method is to determine the partition function associated with a potential model. This approach can be used to calculate various thermodynamic properties of the system based on the microscopic information.In this work, the improved Hulbert-Hirschfelder (IHH) based potential energy model is used to simulate the potential energy curve of NO+ in the ground electronic state. Then, the rovibrational energy levels for the ground electronic state of the NO+ are obtained by numerically solving the radial Schrödinger equation through using the LEVEL program for the IHH potential function. Finally, the total partition function and the thermodynamic properties such as the molar heat capacity, entropy, enthalpy and reduced molar Gibbs free energy of NO+ in a temperature range of 100–6000 K are calculated in the frame of the quantum statistical ensemble theory. The comparison indicates that the potential energy curve calculated based on IHH potential energy function is in better agreement with the experimental data. The root mean square error of IHH potential and experimental Rydberg-Klein-Rees (RKR) potential is 96.9 cm–1, the root mean square error of Hulbert-Hirschfelder (HH) potential is 112.7 cm–1, and the root mean square error of MRCI/aug-cc-pV6Z potential is 133 cm–1. And the macroscopic thermodynamic properties of NO+ predicted by IHH are closer to the experimental values, which shows that the IHH potential model is also applicable to the ion system.A feasible method is presented to obtain the thermodynamic properties of gaseous diatomic ions based on microscopic information by constructing reliable analytical potential energy function associated with quantum statistical ensemble theory.
      通信作者: 樊群超, fanqunchao@mail.xhu.edu.cn ; 范志祥, fanzhixiang@mail.xhu.edu.cn
    • 基金项目: 中央引导地方科技发展资金项目 (批准号: 2021ZYD0050)、四川省自然科学基金 (批准号: 2022NSFSC1857)、宜宾学院计算物理四川省高等学校重点实验室开放基金(批准号: ybxyjswl-zd-2020-006)和大学生创新创业训练项目(批准号: S202210623057)资助的课题.
      Corresponding author: Fan Qun-Chao, fanqunchao@mail.xhu.edu.cn ; Fan Zhi-Xiang, fanzhixiang@mail.xhu.edu.cn
    • Funds: Project supported by the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province (Grant No. 2021ZYD0050), the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC1857), the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (Grant No. ybxyjswl-zd-2020-006), and the National Undergraduate Innovation and Entrepreneurship Training Program of China (Grant No. S202210623057).
    [1]

    Petrou A L 2012 Chem. Geo. 308 50Google Scholar

    [2]

    Ding Q C, Jia C S, Liu J Z, Li J, Du R F, Liu J Y, Peng X L, Wang C W, Tang H X 2022 Chem. Phys. Lett. 803 139844Google Scholar

    [3]

    Peduzzi E, Boissonnet G, Maréchal F 2016 Fuel 181 207Google Scholar

    [4]

    汪志诚 2013 热力学·统计物理 (第五版) (北京: 高等教育出版社) 第 1 页

    Wang Z C 2013 Thermodynamic Statistical Physics (Vol. 5) (Beijing: Higher Education Press) p1 (in Chinese)

    [5]

    Kjelstrup S, Magnanelli E 2020 Trends Food Sci. Technol. 104 84Google Scholar

    [6]

    Horton T E 1970 The Computation of Partition Functions and Thermo-chemistry Data for Atomic, Ionic, Diatomic, and Polyatomic Species Technical Report 32-1425, National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (N-70 20647, NASA CR108970)

    [7]

    Bartl J, Bartlova M 1989 Contrib. Plasma Phys. 29 285Google Scholar

    [8]

    Peterson K A, Flowers B A, Francisco J S 2001 J. Chem. Phys. 115 7513Google Scholar

    [9]

    Capitelli M, Colonna G, Giordano D, Maraffa L, Casavola A, Minelli P, Pagano D, Pietanza L D, Taccogna F 2005 Tables of Internal Partition Functions and Thermodynamic Properties of High-Temperature Mars-Atmosphere Species from 50 K to 50000 K (Netherlands: European Space Agency Publications Division) p3

    [10]

    Maltsev M A, Kulikov A N, Morozov IV 2016 J. Phys. Conf. Ser. 774 012023Google Scholar

    [11]

    Qin Z, Zhao J M, Liu L H 2018 J. Quant. Spectrosc. Radiat. Transfer. 210 1Google Scholar

    [12]

    Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e202100036Google Scholar

    [13]

    Eyube E S, Notani P P, Dikko A B 2022 Eur. Phys. J. Plus. 137 329Google Scholar

    [14]

    Maltsev M A, Morozov I V, Osina E L 2019 High. Temp. 57 335Google Scholar

    [15]

    Maltsev M A, Morozov I V, Osina E L 2019 High Temp. 57 37Google Scholar

    [16]

    Maltsev M A, Morozov I V, Osina E L 2020 High Temp. 58 184Google Scholar

    [17]

    Maltsev M A, Aksenova S A, Morozov I V, Minenkov Y, Osina E L 2023 J. Comput. Chem. 44 1189Google Scholar

    [18]

    Tian H R, Fan Q C, Fan Z X, Fu J, Li H D, Ma J, Xie F 2022 Int. J. Quantum Chem. 122 e26983Google Scholar

    [19]

    Partridge H, Langhoff S R, Bauschlicher C W 1990 J. Chem. Phys. 93 7179Google Scholar

    [20]

    Cosby P C, Helm H 1981 J. Chem. Phys. 75 3882Google Scholar

    [21]

    Werner H J, Rosmus P 1982 J. Mol. Spectrosc. 96 362Google Scholar

    [22]

    Sheehan C H, Maurice J P S 2004 J. Geophys. Res. 109 A03302Google Scholar

    [23]

    Liu H, Liu L H, Wei L Q, Chu B X, Qin Z Z, Jin G Z, Tong Z F, Dong L H, Li B 2020 Fuel 272 117738Google Scholar

    [24]

    Smith D, Chippendale T W E, Španěl P 2014 Rapid Commun. Mass Spectrom. 28 1917Google Scholar

    [25]

    Dias M, Gurusinghe R M, Suits A G 2022 J. Phys. Chem. A. 126 5354Google Scholar

    [26]

    Chase M W 1998 Journal of Physical and Chemical Reference Data Monograph (Vol. 9) (New York: National Institute of Standards and Technology Gaithersburg) p1604

    [27]

    Dunham J L 1932 Phys. Rev. 41 721Google Scholar

    [28]

    Ilieva T, Iliev I 2016 J. Mol. Spectrosc. 330 28Google Scholar

    [29]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer. 186 167Google Scholar

    [30]

    Schwabl F 2006 Statistical Mechanics (2nd Ed.) (Berlin Heidelberg: Springer-Verlag) p409

    [31]

    Huber K P, Herzberg G 1950 Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p9

    [32]

    Gordillo-Vázquez F J, Kunc J A 1998 J. Appl. Phys. 84 4693Google Scholar

    [33]

    Holbrook R, Kaledin L, Kunc J A 1993 Phys. Rev. E 47 1285Google Scholar

    [34]

    Holbrook R, Kunc J A 1994 Phys. Plasmas. 1 1075Google Scholar

    [35]

    Zhang J P, Cheng X L, Zhang H, Yang X D 2011 Chinese Phys. B. 20 060401Google Scholar

    [36]

    Reddy R R, Nazeer Ahammed Y, Baba Basha D, Narasimhulu K, Siva Sankar Reddy L, Rama Gopal K 2006 J. Quant. Spectrosc. Radiat. Transfer. 97 344Google Scholar

    [37]

    Barklem P S, Collet R 2016 Astron. Astrophys. 588 A96Google Scholar

  • 图 1  NO+离子的势能曲线对比

    Fig. 1.  Comparison of potential energy curves of NO+.

    图 2  NO+离子的内部配分函数与其他数据[37]结果对比(ARE为相对误差的绝对值)

    Fig. 2.  Comparison of internal partition function of NO+ and other data[37] (ARE means the absolute relative errors).

    图 3  NO+离子摩尔热容与NIST实验数据[26]对比

    Fig. 3.  Comparison of molar heat capacity of NO+ and NIST experimental data[26].

    图 4  NO+离子相对摩尔焓与NIST实验数据[26]对比

    Fig. 4.  Comparison of the molar enthalpy increment of NO+ and NIST experimental data[26].

    图 5  NO+离子摩尔熵与NIST实验数据[26]对比

    Fig. 5.  Comparison of the molar entropy of NO+ and NIST experimental data[26].

    图 6  NO+离子约化摩尔吉布斯自由能与NIST实验数据[26]对比

    Fig. 6.  Comparison of the reduced molar Gibbs free energy of NO+ and NIST experimental data[26].

    表 1  NO+离子不同势能及其与RKR实验值[36]的误差值

    Table 1.  Different potential energy of NO+ ion and its absolute error with the experimental value of RKR[36].

    r$ {E_{{\text{RKR}}}} $/cm–1[36]$ {E_{{\text{IHH}}}} $/cm–1$\left| {\Delta {E_{ {\text{RKR–IHH} } } }} \right|$/cm–1$ {E_{{\text{HH}}}} $/cm–1$ \left| {\Delta {E_{{\text{RKR–HH}}}}} \right| $/cm–1$ {E_{{\text{MRCI}}}} $/cm–1[35]$ \left| {\Delta {E_{{\text{RKR–MRCI}}}}} \right| $/cm–1
    0.92616911.017037.5012716886.092517113.82203
    0.93414761.914825.646414721.534014833.4472
    0.94312580.212561.201912494.498612417.22163
    0.95310366.110382.871710342.772310343.4723
    0.9638119.408115.44148094.606258111.8388
    0.9775840.205839.58615830.84295833.2007
    0.9953528.503522.74163520.40783526.1132
    1.0221184.301161.440231161.306231142.91341
    1.1091184.301187.71231187.82641160.83523
    1.1473528.503505.745233507.331213502.36226
    1.1755840.205886.843475892.355525887.90948
    1.1998119.408269.8261508282.2201638289.580170
    1.21110366.110285.108110305.886010179.40187
    1.24112580.212581.93212615.363512503.0977
    1.26114761.914905.6214414955.4019414955.96194
    1.28016911.017187.3727617256.8334617219.91309
    RMSD96.9112.7133
    下载: 导出CSV

    表 2  HH, IHH势模型计算得到的NO+离子不同热力学性质的RMSD

    Table 2.  RMSD of HH and IHH potential models for different thermodynamic properties of NO+ ions.

    热力学量
    HHIHH
    $ {C_{\text{m}}} $/(J·mol–1·K–1)0.0539120.021733
    $ {S_{\text{m}}} $/(J·mol–1·K–1)

    0.0352330.022930
    $\Delta H$/(kJ·mol–1)
    0.0825030.034329
    $ {G_{\text{r}}} $/(J·mol–1·K–1)
    0.0210790.017711
    下载: 导出CSV
  • [1]

    Petrou A L 2012 Chem. Geo. 308 50Google Scholar

    [2]

    Ding Q C, Jia C S, Liu J Z, Li J, Du R F, Liu J Y, Peng X L, Wang C W, Tang H X 2022 Chem. Phys. Lett. 803 139844Google Scholar

    [3]

    Peduzzi E, Boissonnet G, Maréchal F 2016 Fuel 181 207Google Scholar

    [4]

    汪志诚 2013 热力学·统计物理 (第五版) (北京: 高等教育出版社) 第 1 页

    Wang Z C 2013 Thermodynamic Statistical Physics (Vol. 5) (Beijing: Higher Education Press) p1 (in Chinese)

    [5]

    Kjelstrup S, Magnanelli E 2020 Trends Food Sci. Technol. 104 84Google Scholar

    [6]

    Horton T E 1970 The Computation of Partition Functions and Thermo-chemistry Data for Atomic, Ionic, Diatomic, and Polyatomic Species Technical Report 32-1425, National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (N-70 20647, NASA CR108970)

    [7]

    Bartl J, Bartlova M 1989 Contrib. Plasma Phys. 29 285Google Scholar

    [8]

    Peterson K A, Flowers B A, Francisco J S 2001 J. Chem. Phys. 115 7513Google Scholar

    [9]

    Capitelli M, Colonna G, Giordano D, Maraffa L, Casavola A, Minelli P, Pagano D, Pietanza L D, Taccogna F 2005 Tables of Internal Partition Functions and Thermodynamic Properties of High-Temperature Mars-Atmosphere Species from 50 K to 50000 K (Netherlands: European Space Agency Publications Division) p3

    [10]

    Maltsev M A, Kulikov A N, Morozov IV 2016 J. Phys. Conf. Ser. 774 012023Google Scholar

    [11]

    Qin Z, Zhao J M, Liu L H 2018 J. Quant. Spectrosc. Radiat. Transfer. 210 1Google Scholar

    [12]

    Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e202100036Google Scholar

    [13]

    Eyube E S, Notani P P, Dikko A B 2022 Eur. Phys. J. Plus. 137 329Google Scholar

    [14]

    Maltsev M A, Morozov I V, Osina E L 2019 High. Temp. 57 335Google Scholar

    [15]

    Maltsev M A, Morozov I V, Osina E L 2019 High Temp. 57 37Google Scholar

    [16]

    Maltsev M A, Morozov I V, Osina E L 2020 High Temp. 58 184Google Scholar

    [17]

    Maltsev M A, Aksenova S A, Morozov I V, Minenkov Y, Osina E L 2023 J. Comput. Chem. 44 1189Google Scholar

    [18]

    Tian H R, Fan Q C, Fan Z X, Fu J, Li H D, Ma J, Xie F 2022 Int. J. Quantum Chem. 122 e26983Google Scholar

    [19]

    Partridge H, Langhoff S R, Bauschlicher C W 1990 J. Chem. Phys. 93 7179Google Scholar

    [20]

    Cosby P C, Helm H 1981 J. Chem. Phys. 75 3882Google Scholar

    [21]

    Werner H J, Rosmus P 1982 J. Mol. Spectrosc. 96 362Google Scholar

    [22]

    Sheehan C H, Maurice J P S 2004 J. Geophys. Res. 109 A03302Google Scholar

    [23]

    Liu H, Liu L H, Wei L Q, Chu B X, Qin Z Z, Jin G Z, Tong Z F, Dong L H, Li B 2020 Fuel 272 117738Google Scholar

    [24]

    Smith D, Chippendale T W E, Španěl P 2014 Rapid Commun. Mass Spectrom. 28 1917Google Scholar

    [25]

    Dias M, Gurusinghe R M, Suits A G 2022 J. Phys. Chem. A. 126 5354Google Scholar

    [26]

    Chase M W 1998 Journal of Physical and Chemical Reference Data Monograph (Vol. 9) (New York: National Institute of Standards and Technology Gaithersburg) p1604

    [27]

    Dunham J L 1932 Phys. Rev. 41 721Google Scholar

    [28]

    Ilieva T, Iliev I 2016 J. Mol. Spectrosc. 330 28Google Scholar

    [29]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer. 186 167Google Scholar

    [30]

    Schwabl F 2006 Statistical Mechanics (2nd Ed.) (Berlin Heidelberg: Springer-Verlag) p409

    [31]

    Huber K P, Herzberg G 1950 Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p9

    [32]

    Gordillo-Vázquez F J, Kunc J A 1998 J. Appl. Phys. 84 4693Google Scholar

    [33]

    Holbrook R, Kaledin L, Kunc J A 1993 Phys. Rev. E 47 1285Google Scholar

    [34]

    Holbrook R, Kunc J A 1994 Phys. Plasmas. 1 1075Google Scholar

    [35]

    Zhang J P, Cheng X L, Zhang H, Yang X D 2011 Chinese Phys. B. 20 060401Google Scholar

    [36]

    Reddy R R, Nazeer Ahammed Y, Baba Basha D, Narasimhulu K, Siva Sankar Reddy L, Rama Gopal K 2006 J. Quant. Spectrosc. Radiat. Transfer. 97 344Google Scholar

    [37]

    Barklem P S, Collet R 2016 Astron. Astrophys. 588 A96Google Scholar

  • [1] 范俊宇, 高楠, 王鹏举, 苏艳. LLM-105的分子间相互作用和热力学性质. 物理学报, 2024, 73(4): 046501. doi: 10.7498/aps.73.20231696
    [2] 朱诚, 陈仙辉, 王城, 宋明, 夏维东. 氩-碳-硅等离子体热力学性质和输运系数计算. 物理学报, 2023, 72(12): 125202. doi: 10.7498/aps.72.20222390
    [3] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究. 物理学报, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [4] 赵玉娜, 丛红璐, 成爽, 于娜, 高涛, 马俊刚. 第一性原理研究Li2NH的晶格动力学和热力学性质. 物理学报, 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [5] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [6] 汤文辉, 徐彬彬, 冉宪文, 徐志宏. 高温等离子体的状态方程及其热力学性质. 物理学报, 2017, 66(3): 030505. doi: 10.7498/aps.66.030505
    [7] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [8] 门福殿, 王炳福, 何晓刚, 隗群梅. 强磁场中弱相互作用费米气体的热力学性质. 物理学报, 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [9] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [10] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [11] 徐布一, 陈俊蓉, 蔡静, 李权, 赵可清. 2-(甲苯-4-磺酰胺基)-苯甲酸的结构、光谱与热力学性质的理论研究. 物理学报, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [12] 陈怡, 申江. NaZn13型Fe基化合物的结构和热力学性质研究. 物理学报, 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [13] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [14] 李 权, 朱正和. AuZn和AuAl分子基态与低激发态的势能函数与热力学性质. 物理学报, 2008, 57(6): 3419-3424. doi: 10.7498/aps.57.3419
    [15] 宋海峰, 刘海风. 金属铍热力学性质的理论研究. 物理学报, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [16] 袁都奇. 相互作用对玻色气体热力学性质及稳定性的影响. 物理学报, 2006, 55(4): 1634-1638. doi: 10.7498/aps.55.1634
    [17] 门福殿. 弱磁场中弱相互作用费米气体的热力学性质. 物理学报, 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [18] 苏国珍, 陈丽璇. 弱相互作用费米气体的热力学性质. 物理学报, 2004, 53(4): 984-990. doi: 10.7498/aps.53.984
    [19] 朱志艳, 朱正和, 高 涛, 蒋 刚. 金等离子体中Au48+—Au52+平衡分布的统计热力学研究 . 物理学报, 2004, 53(10): 3330-3335. doi: 10.7498/aps.53.3330
    [20] 张雅男, 晏世雷. 随机横场与晶场作用混合自旋系统的热力学性质. 物理学报, 2003, 52(11): 2890-2895. doi: 10.7498/aps.52.2890
计量
  • 文章访问数:  2184
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-05-22
  • 上网日期:  2023-06-14
  • 刊出日期:  2023-08-20

/

返回文章
返回