搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钕铁硼永磁材料氢破过程的热力学性质研究

黄雅晶 郑勇平 黄志高

引用本文:
Citation:

钕铁硼永磁材料氢破过程的热力学性质研究

黄雅晶, 郑勇平, 黄志高

Study on the Thermodynamic Properties of Hydrogen Decrepitation Process in Nd2Fe14B Permanent Magnet Materials

HUANG Yajing, ZHENG Yongping, HUANG Zhigao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 回收利用是稀土资源高效利用的可持续方案。氢化破碎技术因其高效环保特性被广泛采用,但氢破过程中产生的混合相会显著降低回收效率,这对工艺的优化提出了新的挑战。本文采用基于第一性原理计算结合机器学习方法,通过德拜模型系统地探究了氢化破碎过程中关键稀土氢化物(如NdH2、NdH3、Nd2H5)的热力学行为。研究结果表明,在600 kPa压强下,630 K左右的温度区间有望为氢化破碎工艺提供一个较为理想的操作条件,在此条件下,NdH2能够实现自发氢化,且能够有效抑制非稳定相的形成,有助于提高稀土回收效率。本研究还揭示了过高温度对NdH2热力学性质可能产生的不利影响,进一步强调了在特定温度区间操作的重要性。这些发现不仅为理解钕铁硼氢化过程的热力学机理提供了新的视角,而且为工业应用中氢化破碎工艺参数的优化提供了理论参考。
    Recycling is a sustainable strategy for the effcient utilization of rare earth resources. Hydrogenation milling has been widely adopted due to its high effciency and environmental benefits. However, the formation of non-stable phases during the hydrogenation process significantly reduces recovery effciency, presenting new challenges for process optimization. In this study, a combination of first-principles calculations and machine learning methods was employed to systematically investigate the thermodynamic behavior of key rare earth hydrides—such as NdH2, NdH3, and Nd2H5 during the hydrogenation milling process using the Debye model for lattice vibrations. The results show that a temperature range around 630 K under a pressure of 600 kPa may offer an ideal operational condition for the hydrogenation milling process. Under these conditions, NdH2 can undergo spontaneous hydrogenation, and the formation of unstable phases can be effectively suppressed, thereby improving rare earth recovery effciency. This study also reveals the potential adverse effects of excessively high temperatures on the stability and reactivity of NdH2, further emphasizing the importance of operating within a specific temperature range. These findings provide new insights into the thermodynamic mechanisms of the hydrogenation process in Nd2Fe14B permanent magnet material. Furthermore, they offer theoretical guidance for the optimization of industrial hydrogenation milling parameters.
  • [1]

    Poenaru I, Patroi E A, Patroi D, Iorga A, Manta E 2023 Journal of Magnetism and Magnetic Materials 577170777

    [2]

    Liu X B, Kesler M S, Besser M F, Kramer M J, McGuire M A, Nlebedim I C 2021 IEEE Transactions on Magnetics 576

    [3]

    Dirba I, Pattur P, Soldatov I, Adabifiroozjaei E, Molina-Luna L, Gutfleisch O 2023 Journal of Alloys and Compounds 930167411

    [4]

    Lixandru A, Poenaru I, Güth K, Gauß R, Gutfleisch O 2017 Journal of Alloys and Compounds 72451

    [5]

    Ojih J, Al-Fahdi M, Yao Y, Hu J, Hu M 2024 Journal of Materials Chemistry A 128502

    [6]

    Toher C, Plata J J, Levy O, De Jong M, Asta M, Nardelli M B, Curtarolo S 2014 Physical Review B 90174107

    [7]

    Xu C R, Shao L, Ding N, Jiang H H, Tang B Y 2024 Physica B: Condensed Matter 674415589

    [8]

    Nenuwe N O, Yebovi A S 2024 Computational Condensed Matter 38 e00882

    [9]

    Ning J, Zhu Y, Kidd J, Guan Y, Wang Y, Mao Z, Sun J 2020 npj Computational Materials 6157

    [10]

    Vesti A, Music D, Olsson P A 2024 Nuclear Materials and Energy 39101684

    [11]

    Sheridan R S, Harris I R, Walton A 2016 Journal of Magnetism and Magnetic Materials 401455

    [12]

    Matin M A, Kwon H W, Lee J G, Yu J H 2014 Journal of Magnetics 19106

    [13]

    Michalski B, Szymanski M, Gola K, Zygmuntowicz J, Leonowicz M 2022 Journal of Magnetism and Magnetic Materials 548168979

    [14]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Computational Materials 115

    [15]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 Jom 651501

    [16]

    Li X T, Yue M, Zhou S X, Kuang C J, Zhang G Q, Dong B S, Zeng H 2018 Journal of Magnetism and Magnetic Materials 460570

    [17]

    Habibzadeh A, Kucuker M A, Gökelma M 2023 ACS Omega 817431

    [18]

    Qin T, Zhang Q, Wentzcovitch R M, Umemoto K 2019 Computer Physics Communications 237199

    [19]

    Baroni S, Giannozzi P, Isaev E 2018 Theoretical and Computational Methods in Mineral Physics: Geophysical Applications 7139

    [20]

    Palumbo M, Dal Corso A 2017 Journal of Physics Condensed Matter 29395401

    [21]

    Otero-De-La-Roza A, Abbasi-Pérez D, Luaña V 2011 Computer Physics Communications 1822232

    [22]

    Togo A, Tanaka I 2015 Scripta Materialia 1081

    [23]

    Bartel C J, Millican S L, Deml A M, Rumptz J R, Tumas W, Weimer A W, Lany S, Stevanović V, Musgrave C B, Holder A M 2018 Nature Communications 94168

    [24]

    Chen S, Zhang J, Wang Y, Wang T, Li Y, Liu Z 2023 Metals 13225

    [25]

    Deng B, Zhong P, Jun K, Riebesell J, Han K, Bartel C J, Ceder G 2023 Nature Machine Intelligence 51031

    [26]

    Pan J 2023 Nature Computational Science 3816

    [27]

    Blanco M A, Francisco E, Luaña V 2004 Computer Physics Communications 15857

    [28]

    Shamsuddin M 2024 Thermodynamic Measurement Techniques, vol. Part F3193 of The Minerals, Metals Materials Series (Cham: Springer International Publishing), pp 1–349

    [29]

    Olivotos S, Economou-Eliopoulos M 2016 Geosciences (Switzerland) 62

    [30]

    Rostami S, Gonze X 2024 Physical Review B 110014103

    [31]

    Bartel C J 2022 Journal of Materials Science 5710475

    [32]

    Drebushchak V A 2020 Journal of Thermal Analysis and Calorimetry 1421097

    [33]

    Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S 1999 Journal of Alloys and Compounds 293-29523

    [34]

    Hu X, Wang H, Linton K, Le Coq A, Terrani K A 2021 Handbook on the material properties of yttrium hydride for high temperature moderator applications. Tech. rep., Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    [35]

    Vajda P, Daou J N 1996 Solid State Phenomena 49-5071

    [36]

    Grinderslev J B, Møller K T, Bremholm M, Jensen T R 2019 Inorganic Chemistry 585503

    [37]

    Pourarian F 2002 Physica B: Condensed Matter 32118

    [38]

    Suwarno S, Lototskyy M V, Yartys V A 2020 Journal of Alloys and Compounds 842155530

    [39]

    Sheridan R S, Sillitoe R, Zakotnik M, Harris I R, Williams A J 2012 Journal of Magnetism and Magnetic Materials 32463

    [40]

    Fultz B 2010 Progress in Materials Science 55247

    [41]

    Piotrowicz A, Pietrzyk S, Noga P, Myćka Ł 2020 Journal of Mining and Metallurgy, Section B: Metallurgy 56415

    [42]

    Xia M, Abrahamsen A B, Bahl C R, Veluri B, Søegaard A I, Bøjsøe P 2017 Journal of Magnetism and Magnetic Materials 44155

    [43]

    Li X, Yue M, Zhou S, Kuang C, Zhang G, Dong B, Zeng H 2019 Journal of Magnetism and Magnetic Materials 473144

  • [1] 刘显洋, 姚嘉薇, 杨俊锋, 樊群超, 范志祥, 田洪瑞. H2和HD分子宏观热力学性质. 物理学报, doi: 10.7498/aps.74.20241793
    [2] 范俊宇, 高楠, 王鹏举, 苏艳. LLM-105的分子间相互作用和热力学性质. 物理学报, doi: 10.7498/aps.73.20231696
    [3] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究. 物理学报, doi: 10.7498/aps.69.20191723
    [4] 赵玉娜, 丛红璐, 成爽, 于娜, 高涛, 马俊刚. 第一性原理研究Li2NH的晶格动力学和热力学性质. 物理学报, doi: 10.7498/aps.68.20190139
    [5] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算. 物理学报, doi: 10.7498/aps.66.016103
    [6] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, doi: 10.7498/aps.66.146101
    [7] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.65.027101
    [8] 濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟. NbSi2奇异高压相及其热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087103
    [9] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, doi: 10.7498/aps.63.117301
    [10] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.107402
    [11] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.046301
    [12] 门福殿, 王炳福, 何晓刚, 隗群梅. 强磁场中弱相互作用费米气体的热力学性质. 物理学报, doi: 10.7498/aps.60.080501
    [13] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.076501
    [14] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究. 物理学报, doi: 10.7498/aps.60.087104
    [15] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.6882
    [16] 王宇杰, 周俊敏, 钱萍, 申江. 镍基超导母体材料EuNi2Si2的结构和热力学性质研究. 物理学报, doi: 10.7498/aps.59.8776
    [17] 徐布一, 陈俊蓉, 蔡静, 李权, 赵可清. 2-(甲苯-4-磺酰胺基)-苯甲酸的结构、光谱与热力学性质的理论研究. 物理学报, doi: 10.7498/aps.58.1531
    [18] 陈怡, 申江. NaZn13型Fe基化合物的结构和热力学性质研究. 物理学报, doi: 10.7498/aps.58.141
    [19] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.57.7145
    [20] 门福殿. 弱磁场中弱相互作用费米气体的热力学性质. 物理学报, doi: 10.7498/aps.55.1622
计量
  • 文章访问数:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-01

/

返回文章
返回