-
本文通过扩展的改进多参数指数型(The extended improved multiparameter exponential-type potential, EIMPET)势能模型,结合实验光谱数据,研究了H2和HD分子的热力学性质。首先利用解析势能曲线计算得到分子的振转能级,其次结合量子统计系综理论计算了分子在100-6000 K温度下的配分函数、摩尔热容、摩尔熵、摩尔焓以及约化摩尔吉布斯自由能。计算结果与NIST数据库中的数据具有良好的一致性。本文的理论方法可用于预测某些气态物质的热力学性质。
-
关键词:
- H2分子 /
- HD分子 /
- EIMPET势能模型 /
- 热力学性质
H2 molecule and their isotopes represent one of the modern clean energy sources. It is imperative to understand their thermodynamic properties to comprehend their behavior under various conditions and facilitate theirdeeper applications. This paper utilizes the extended improved multiparameter exponential-type potential (EIMPET) combined with the quantum statistical ensemble theory to investigate and analyze the thermodynamic properties of H2 and HD molecules.
Firstly, reliable energy level data for molecules were obtained using the EIMPET potential. Subsequently, the one-dimensional Schrödinger equation was solved with the LEVEL program to determine the rovibrational energy levels of the molecules. Finally, the quantum statistical ensemble theory was integrated to determine the partition functions, molar heat capacity, molar entropy, molar enthalpy, and reduced molar Gibbs free energy of H2 and HD over the temperature range of 100-6000 K. The calculation results indicate that compared with IHH potential and IMPET potential, the EIMPET potential is closer to RKR data. A comparison of the calculated thermodynamic properties of the molecules revealed that the EIMPET potential-based method results agree well with the NIST database. Specifically, for H2, the root mean square errors (RMS) for Cm(T), Sm(T), Gr(T), and ΔHr(T) were were 0.6894 J•K-1•mol-1, 0.3824 J•K-1•mol-1, 0.1754 J•K-1•mol-1, and 0.9586 kJ•mol-1, respectively, while for HD, the RMS values were 0.3431 J•K-1•mol-1, 0.1443 J•K-1•mol-1, 0.0495 J•K-1•mol-1, and 0.4863 kJ•mol-1, respectively, all of these results are superior to that obtained using IMPET potential, and overall superior to IHH potential. These findings demonstrate the advantages of the EIMPET potential in calculating the thermodynamic properties of diatomic gas molecules and its practical applications, providing a foundation for subsequent research on the thermodynamic properties of triatomic molecules.-
Keywords:
- H2molecule /
- HD molecule /
- EIMPET potential energy model /
- thermodynamic properties
-
[1] Wang C W, Peng X L, Liu J Y, Jiang R, Li X P, Liu Y S, Liu S Y, Wei L S, Zhang L H, Jia C S 2022 Int. J. Hydrog. Energy. 47 27821
[2] Fan X, Bañados E, Simcoe R A 2023 Annu. Rev. Astron. Astr. 61 373
[3] Abramowitz S, Chase M W 1991 Pure. Appl. Chem. 63 1449
[4] Grein F 2023 Struct. Chem. 34 317
[5] Yahiatène I, Hennig S, Huser T 2013 Chem. Phys. Lett. 587 1
[6] Angelova M, Frank A 2005 Phys. At. Nucl. 68 1625
[7] Halpern A M 2010 J. Chem. Educ. 87 174
[8] Liu G Y, Sun W G, Liao B T 2015 Indian. J. Phys. 89 1109
[9] Jia C S, Zhang L H, Wang C W 2017 Chem. Phys. Lett. 667 211
[10] Ding Q C, Jia C S, Liu J Z, Li J, Du R F, Liu J Y, Peng X L, Wang C W, Tang H X 2022 Chem. Phys. Lett. 803 139844
[11] Jia C S, Wang C W, Zhang L H, Peng X L, Tang H M, Zeng R 2018 Chem. Eng. Sci. 183 26
[12] Ikot A N, Chukwuocha E O, Onyeaju M C, Onate C A, Ita B I, Udoh M E 2018 Pramana-J. Phys. 90 22
[13] Okorie U S, Ikot A N, Chukwuocha E O, Rampho G J 2020 Results. Phys. 17 103078
[14] Bakhti H, Diaf A, Hachama M 2020 Comput. Theor. Chem. 1185 112879
[15] Oluwadare O J, Oyewumi K J, Abiola T O 2022 Indian. J. Phys. 96 1921
[16] Strekalov M L 2024 Chem. Phys. Impact. 8 100444
[17] Coveney P V, Wan S 2016 Phys. Chem. Chem. Phys. 18 30236
[18] Fang Z, Vasiliu M, Peterson K A, Dixon D A 2017 J. Chem. Theory. comput. 13 1057
[19] Startsev A N 2019 J. Sulfur. Chem. 40 435
[20] van Speybroeck V, Gani R, Meier R J 2010 Chem. Soc. Rev. 39 1764
[21] Kang D, Fan Q, Fan Z, Li H, Fu J 2024 Int. J. Quantum. Chem. 124 e27373
[22] National Institute of Standards and Technology (NIST), 2017. NIST Chemistry WebBook, NISTS Standard Reference Database Number 69. http://webbook.nist.gov/chemistry/.
[23] Xie B-J, Jia C-S 2020 Int. J. Quantum. Chem. 120 e26058
[24] Morse P M 1929 Phys. Rev. 34 57
[25] Desai A M, Mesquita N, Fernandes V 2020 Phys. Scr. 95 085401
[26] Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167
[27] Ding Q C, Jia C S, Wang C W, Peng X L, Liu J Y, Zhang L H, Jiang R, Zhu S Y, Yuan H, Tang H X 2023 J. Mol. Liq. 371 121088
[28] Hooydonk G V http://hdl.handle.net/1854/LU-1212652 [2024-12-18]
[29] Tobias I, Vanderslice J T 1961 J. Chem. Phys. 35 1852
[30] Fink E H, Akins D L, Bradley Moore C 1969 Chem. Phys. Lett. 4 283
[31] Wilkinson P G 1968 Can. J. Phys. 46 1225
[32] Tian H, Fan Q, Fan Z, Fu J, Li H, Ma J, Xie F 2022 Int. J. Quantum. Chem. 122 e26983
[33] Leachman J W, Jacobsen R T, Penoncello S G, Lemmon E W 2009 J. Phys. Chem. Ref. Data. 38 72
计量
- 文章访问数: 25
- PDF下载量: 2
- 被引次数: 0