搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电异质结T-NbTe2/Ga2S3的接触性质及调控

孙智玄 赵长松 程芳

引用本文:
Citation:

铁电异质结T-NbTe2/Ga2S3的接触性质及调控

孙智玄, 赵长松, 程芳

The control of the contact properties in the ferroelectric heterojunction T-NbTe2/Ga2S3

Sun Zhi-Xuan, Zhao Chang-Song, Cheng Fang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 单层的铁电半导体Ga2S3因具有卓越的延展性,极高的载流子迁移率以及独特的面外非对称极化特性而备受关注。利用铁电半导体Ga2S3面外非对称极化特性,本研究构建了T-NbTe2/Ga2S3铁电异质结,并选用了两个能量最稳定且Ga2S3极化强度方向不同的异质结PD1($\vec{P}$向下)和PU2($\vec{P}$向上),对其结构稳定性和电接触性质进行相关研究。结果表明,由于Ga2S3极化强度方向的不同,本征态下的异质结PD1和PU2分别形成了N型肖特基接触和P型肖特基接触。改变铁电半导体Ga2S3的极化特性,能改变铁电异质结T-NbTe2/Ga2S3肖特基势垒的接触类型,这为设计多功能的肖特基器件提供了一种实用的方法。对于异质结PD1和PU2,施加外加正电场或者双轴应变拉伸,都能有效实现肖特基接触至欧姆接触的转变。这些结果为高性能电接触界面的二维铁电纳米器件提供了理论参考。
    The monolayer ferroelectric semiconductor Ga2S3 has drawn extensive attention because of its outstanding ductility, extremely high carrier mobility and unique out-of-plane asymmetric polarization characteristics. Utilizing out-of-plane asymmetric polarization characteristics of Ga2S3, we construct the T-NbTe2/Ga2S3ferroelectric heterojunctions. By the first-principles calculations, we systemically study structural stability, preparation possibility and electrical contact properties for various ferroelectric heterojunction T-NbTe2/Ga2S3 with the different polarization directions of Ga2S3. We find that heterojunctions T-NbTe2/Ga2S3exhibit sensitive responses to out-of-plane asymmetric polarization characteristics of Ga2S3. The most energy-stable heterojunctions PD1 ($\vec{P}$ downward) and PU2 ($\vec{P}$ upward) in the intrinsic state form N-type and P-type Schottky contacts, respectively. Changing the polarization characteristics of the ferroelectric semiconductor Ga2S3 can alter the contact type of the Schottky barrier in the ferroelectric heterojunction T-NbTe2/Ga2S3, which provide a practical approach for designing multifunctional Schottky devices. Specifically, the electrical contact depends on the external electric field. For heterojunctions PD1 (PU2), the contact can be transited from Schottky contact to Ohmic contact at electric field strength +0.5 V/Å (+0.6 V/Å). Besides electric field, the contact property of both heterojunctions PD1 and PU2 may also be tuned by external biaxial strain. For heterojunctions PD1, the contact can be transited from Schottky contact to Ohmic contact at the biaxial strain tensile 8%. And for heterojunctions PU2, the contact can be transited from P-type Schottky contact to N-type Schottky contact at the biaxial strain tensile 2%, then from N-type Schottky contact to Ohmic contact at the strain tensile 10%.These results provide a theoretical reference for two-dimensional ferroelectric nanodevices with high-performance electrical contact interfaces.
  • [1]

    Li Z H,Han J N,Cao S G,Zhang Z H 2023Appl. Surf. Sci. 636 157766

    [2]

    Zheng Y, Gao J, Han C, Chen W 2021Cell Rep. Phys. Sci. 2 100298

    [3]

    Chen S Y,Wang S,Wang C,Wang Z C,Liu Q 2022Nano Today 42 101372

    [4]

    Zheng S,Lu H C,Liu H,Liu D M,Robertson J 2019Nanoscale. 11 4811

    [5]

    Chhowalla M,Jena D,Zhang H 2016Nat. Rev. Mater. 1 16052

    [6]

    Allain A,Kang J,Banerjee K,Kis A 2015Nat. Mater. 14 1195

    [7]

    Nguyen H T,Obeid M M,Bafekry A,Idrees M,Vu T V,Phuc H V,Hieu N N,Hoa L T,Amin B,Nguyen C V 2020Phys.Rev.B 102 075414

    [8]

    Cao L M,Ang Y S,Wu Q Y,Ang L K 2019Appl.Phys.Lett.115 241601

    [9]

    Zheng Y L,Tang X,Wang W L,Jin L,Li G Q 2021Adv. Funct. Mater. 312008307

    [10]

    Jastrzebskia C,Jastrzebskib D J,Kozaka V,Pietakb K,Wierzbicki M,Gebicki W 2019Mater. Sci. Semicond. Process. 94 80

    [11]

    Dénoue K,Cheviré F,Calers C,Verger L,Coq D L,Calvez L 2020 J. Solid State Chem 292121743

    [12]

    Zhang G T,Lu K J,Wang Y F,Wang H W,Chen Q 2022Phys. Rev. B 105 235303

    [13]

    Liu X H,Mao Y L 2024Appl. Phys. Lett. 125 043102

    [14]

    Khusayfan N M,Khanfar H K 2018Results.Phys 10 332

    [15]

    Khusayfan N M,Qasrawi A F,Khanfar H K 2018Results. Phys 8 1239

    [16]

    Shang X X,Zhang Y L,Li T,Zhang H N,Zou X F,Wageh S,Al-Ghamdi A A,Zhang H,Si S H,Li D W 2024J.Materiomics 10355

    [17]

    Dong J Z,Li C S,Yang J,Chen B B,Song H J,Chen J S,Peng W X 2016Cryst. Res.Technol. 51 671

    [18]

    Suonan Z X,Wu H X,Mi S,Xu H,Xu H W, Zhang H Y,Pang F 2024J. Cryst.Growth 648127891

    [19]

    Behera S K,Ramamurthy P C 2024New J. Chem 48 15493

    [20]

    Ataca C, Şahin H, Ciraci S 2012J. Phys. Chem. C 116 8983

    [21]

    Li H,ZhangY F, Liu F B,Lu J 2024Nanoscale 16 18005

    [22]

    Fang S B,Li Q H,Yang C,Wu B C,Liu S Q,Yang J,Ma J C,Yang Z M,Tang K C,Lu J 2023Phys. Rev. Mater. 7084412

    [23]

    Han J N,Cao S G,Li Z H,Zhang Z H 2022J. Phys. D: Appl. Phys. 56 045002

    [24]

    Xu Y H,Han J N,Li Z H,Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 365504

    [25]

    Brandbyge M,Mozos J L,Ordejón P,Taylor J,Stokbro K 2002Phys. Rev. B 65 165401

    [26]

    Perdew J P,Burke K,Ernzerhof M 1996Phys. Rev. Lett. 77 3865

    [27]

    Troullier N,Martins J L 1991 Phys. Rev. B 43 1993

    [28]

    Soler J M,Artacho E,Gale J D,García A,Junquera J,Ordejón P,Sánchez-Portal D 2002J. Phys. Condens Matter 14 2745

    [29]

    Grimme S 2006J. Comput. Chem. 271787

    [30]

    Xu Z,Luo W D,Guo S Y,Liu S Z 2024ACS Appl. Mater. Interfaces 1640123

    [31]

    Ramezani H R, Şaşıoğlu E, Hadipour H,Soleimani H T, Friedrich C, Blügel S,Mertig I 2024Phys. Rev. B 109 125108

    [32]

    Fu C F,Sun J Y,Luo Q Q, Li X X,Hu W,Yang J L 2018Nano Lett. 18 6312

    [33]

    Hieu N N,Phuc H V,Kartamyshev A I,Vu T V 2022Phys. Rev. B 105 075402

    [34]

    Jin H,Wei T,Huang B 2024Nano Lett. 35 10892

    [35]

    Xia J L,Gu Y X,Mai J, Hu T Y,Wang Q K,Xie C,Wu Y K,Wang X 2023Heliyon 9 20619

    [36]

    Sun N,Qi S M,Zhou B Z,Mi W B,Wang X C 2021J. Alloys Compd. 875 160048

    [37]

    Tuckerman M, Berne B J, Martyna G J 1992J. Chem. Phys. 97 1990

    [38]

    Zhao C S,Li Z H,Zhang Z H 2024Appl. Surf. Sci. 672 160859

    [39]

    Wang Q H,Li H,Si L N,Dou Z L,Yan H J,Yang Y,Liu F B 2023Mater. Today Commun. 35 10572

    [40]

    Zhang W X, Yin Y, He C 2020Phys. Chem. Chem. Phys. 22 26231

    [41]

    Li Z H, Han J N, Cao S G, Zhang Z H 2023Appl. Surf. Sci. 614 156095

    [42]

    Nguyen C V, Idrees M, Phuc H V, Hieu N N, Binh N T, Amin B,Vu T V 2020Phys. Rev. B 101 235419

    [43]

    Vicario C, Monoszlai B, Hauri C P 2014Phys. Rev. Lett. 112 213901

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 不同相NbS2与GeS2构成的二维金属-半导体异质结的电接触性质. 物理学报, doi: 10.7498/aps.73.20240530
    [2] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, doi: 10.7498/aps.72.20230191
    [3] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, doi: 10.7498/aps.72.20230318
    [4] 黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢. SiC电力电子器件金属接触研究现状与进展. 物理学报, doi: 10.7498/aps.70.20210675
    [5] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, doi: 10.7498/aps.69.20191720
    [6] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, doi: 10.7498/aps.68.20190020
    [7] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, doi: 10.7498/aps.68.20190699
    [8] 魏政鸿, 云峰, 丁文, 黄亚平, 王宏, 李强, 张烨, 郭茂峰, 刘硕, 吴红斌. 低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究. 物理学报, doi: 10.7498/aps.64.127304
    [9] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, doi: 10.7498/aps.64.067303
    [10] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, doi: 10.7498/aps.63.117302
    [11] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, doi: 10.7498/aps.63.127302
    [12] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响. 物理学报, doi: 10.7498/aps.62.206801
    [13] 王晓勇, 种明, 赵德刚, 苏艳梅. p-GaN/p-AlxGa1-xN异质结界面处二维空穴气的性质及其对欧姆接触的影响. 物理学报, doi: 10.7498/aps.61.217302
    [14] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, doi: 10.7498/aps.60.098108
    [15] 封飞飞, 刘军林, 邱冲, 王光绪, 江风益. 硅衬底GaN基LED N极性n型欧姆接触研究. 物理学报, doi: 10.7498/aps.59.5706
    [16] 黄维, 陈之战, 陈义, 施尔畏, 张静玉, 刘庆峰, 刘茜. 组合材料方法研究膜厚对Ni/SiC电极接触性质的影响. 物理学报, doi: 10.7498/aps.59.3466
    [17] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用. 物理学报, doi: 10.7498/aps.58.3443
    [18] 丁志博, 王 坤, 陈田祥, 陈 迪, 姚淑德. 氧气氛中p-GaN/Ni/Au电极在相同温度不同合金时间下的欧姆接触形成机制和扩散行为. 物理学报, doi: 10.7498/aps.57.2445
    [19] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, doi: 10.7498/aps.55.6085
    [20] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, doi: 10.7498/aps.49.1348
计量
  • 文章访问数:  71
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-20

/

返回文章
返回