-
单层的铁电半导体Ga2S3因具有卓越的延展性,极高的载流子迁移率以及独特的面外非对称极化特性而备受关注。利用铁电半导体Ga2S3面外非对称极化特性,本研究构建了T-NbTe2/Ga2S3铁电异质结,并选用了两个能量最稳定且Ga2S3极化强度方向不同的异质结PD1($\vec{P}$向下)和PU2($\vec{P}$向上),对其结构稳定性和电接触性质进行相关研究。结果表明,由于Ga2S3极化强度方向的不同,本征态下的异质结PD1和PU2分别形成了N型肖特基接触和P型肖特基接触。改变铁电半导体Ga2S3的极化特性,能改变铁电异质结T-NbTe2/Ga2S3肖特基势垒的接触类型,这为设计多功能的肖特基器件提供了一种实用的方法。对于异质结PD1和PU2,施加外加正电场或者双轴应变拉伸,都能有效实现肖特基接触至欧姆接触的转变。这些结果为高性能电接触界面的二维铁电纳米器件提供了理论参考。The monolayer ferroelectric semiconductor Ga2S3 has drawn extensive attention because of its outstanding ductility, extremely high carrier mobility and unique out-of-plane asymmetric polarization characteristics. Utilizing out-of-plane asymmetric polarization characteristics of Ga2S3, we construct the T-NbTe2/Ga2S3ferroelectric heterojunctions. By the first-principles calculations, we systemically study structural stability, preparation possibility and electrical contact properties for various ferroelectric heterojunction T-NbTe2/Ga2S3 with the different polarization directions of Ga2S3. We find that heterojunctions T-NbTe2/Ga2S3exhibit sensitive responses to out-of-plane asymmetric polarization characteristics of Ga2S3. The most energy-stable heterojunctions PD1 ($\vec{P}$ downward) and PU2 ($\vec{P}$ upward) in the intrinsic state form N-type and P-type Schottky contacts, respectively. Changing the polarization characteristics of the ferroelectric semiconductor Ga2S3 can alter the contact type of the Schottky barrier in the ferroelectric heterojunction T-NbTe2/Ga2S3, which provide a practical approach for designing multifunctional Schottky devices. Specifically, the electrical contact depends on the external electric field. For heterojunctions PD1 (PU2), the contact can be transited from Schottky contact to Ohmic contact at electric field strength +0.5 V/Å (+0.6 V/Å). Besides electric field, the contact property of both heterojunctions PD1 and PU2 may also be tuned by external biaxial strain. For heterojunctions PD1, the contact can be transited from Schottky contact to Ohmic contact at the biaxial strain tensile 8%. And for heterojunctions PU2, the contact can be transited from P-type Schottky contact to N-type Schottky contact at the biaxial strain tensile 2%, then from N-type Schottky contact to Ohmic contact at the strain tensile 10%.These results provide a theoretical reference for two-dimensional ferroelectric nanodevices with high-performance electrical contact interfaces.
-
Keywords:
- Metal-semiconductor heterojunction /
- Schottky contact /
- Ohmic contact /
- electrical contact
-
[1] Li Z H,Han J N,Cao S G,Zhang Z H 2023Appl. Surf. Sci. 636 157766
[2] Zheng Y, Gao J, Han C, Chen W 2021Cell Rep. Phys. Sci. 2 100298
[3] Chen S Y,Wang S,Wang C,Wang Z C,Liu Q 2022Nano Today 42 101372
[4] Zheng S,Lu H C,Liu H,Liu D M,Robertson J 2019Nanoscale. 11 4811
[5] Chhowalla M,Jena D,Zhang H 2016Nat. Rev. Mater. 1 16052
[6] Allain A,Kang J,Banerjee K,Kis A 2015Nat. Mater. 14 1195
[7] Nguyen H T,Obeid M M,Bafekry A,Idrees M,Vu T V,Phuc H V,Hieu N N,Hoa L T,Amin B,Nguyen C V 2020Phys.Rev.B 102 075414
[8] Cao L M,Ang Y S,Wu Q Y,Ang L K 2019Appl.Phys.Lett.115 241601
[9] Zheng Y L,Tang X,Wang W L,Jin L,Li G Q 2021Adv. Funct. Mater. 312008307
[10] Jastrzebskia C,Jastrzebskib D J,Kozaka V,Pietakb K,Wierzbicki M,Gebicki W 2019Mater. Sci. Semicond. Process. 94 80
[11] Dénoue K,Cheviré F,Calers C,Verger L,Coq D L,Calvez L 2020 J. Solid State Chem 292121743
[12] Zhang G T,Lu K J,Wang Y F,Wang H W,Chen Q 2022Phys. Rev. B 105 235303
[13] Liu X H,Mao Y L 2024Appl. Phys. Lett. 125 043102
[14] Khusayfan N M,Khanfar H K 2018Results.Phys 10 332
[15] Khusayfan N M,Qasrawi A F,Khanfar H K 2018Results. Phys 8 1239
[16] Shang X X,Zhang Y L,Li T,Zhang H N,Zou X F,Wageh S,Al-Ghamdi A A,Zhang H,Si S H,Li D W 2024J.Materiomics 10355
[17] Dong J Z,Li C S,Yang J,Chen B B,Song H J,Chen J S,Peng W X 2016Cryst. Res.Technol. 51 671
[18] Suonan Z X,Wu H X,Mi S,Xu H,Xu H W, Zhang H Y,Pang F 2024J. Cryst.Growth 648127891
[19] Behera S K,Ramamurthy P C 2024New J. Chem 48 15493
[20] Ataca C, Şahin H, Ciraci S 2012J. Phys. Chem. C 116 8983
[21] Li H,ZhangY F, Liu F B,Lu J 2024Nanoscale 16 18005
[22] Fang S B,Li Q H,Yang C,Wu B C,Liu S Q,Yang J,Ma J C,Yang Z M,Tang K C,Lu J 2023Phys. Rev. Mater. 7084412
[23] Han J N,Cao S G,Li Z H,Zhang Z H 2022J. Phys. D: Appl. Phys. 56 045002
[24] Xu Y H,Han J N,Li Z H,Zhang Z H 2023 J. Phys. D: Appl. Phys. 56 365504
[25] Brandbyge M,Mozos J L,Ordejón P,Taylor J,Stokbro K 2002Phys. Rev. B 65 165401
[26] Perdew J P,Burke K,Ernzerhof M 1996Phys. Rev. Lett. 77 3865
[27] Troullier N,Martins J L 1991 Phys. Rev. B 43 1993
[28] Soler J M,Artacho E,Gale J D,García A,Junquera J,Ordejón P,Sánchez-Portal D 2002J. Phys. Condens Matter 14 2745
[29] Grimme S 2006J. Comput. Chem. 271787
[30] Xu Z,Luo W D,Guo S Y,Liu S Z 2024ACS Appl. Mater. Interfaces 1640123
[31] Ramezani H R, Şaşıoğlu E, Hadipour H,Soleimani H T, Friedrich C, Blügel S,Mertig I 2024Phys. Rev. B 109 125108
[32] Fu C F,Sun J Y,Luo Q Q, Li X X,Hu W,Yang J L 2018Nano Lett. 18 6312
[33] Hieu N N,Phuc H V,Kartamyshev A I,Vu T V 2022Phys. Rev. B 105 075402
[34] Jin H,Wei T,Huang B 2024Nano Lett. 35 10892
[35] Xia J L,Gu Y X,Mai J, Hu T Y,Wang Q K,Xie C,Wu Y K,Wang X 2023Heliyon 9 20619
[36] Sun N,Qi S M,Zhou B Z,Mi W B,Wang X C 2021J. Alloys Compd. 875 160048
[37] Tuckerman M, Berne B J, Martyna G J 1992J. Chem. Phys. 97 1990
[38] Zhao C S,Li Z H,Zhang Z H 2024Appl. Surf. Sci. 672 160859
[39] Wang Q H,Li H,Si L N,Dou Z L,Yan H J,Yang Y,Liu F B 2023Mater. Today Commun. 35 10572
[40] Zhang W X, Yin Y, He C 2020Phys. Chem. Chem. Phys. 22 26231
[41] Li Z H, Han J N, Cao S G, Zhang Z H 2023Appl. Surf. Sci. 614 156095
[42] Nguyen C V, Idrees M, Phuc H V, Hieu N N, Binh N T, Amin B,Vu T V 2020Phys. Rev. B 101 235419
[43] Vicario C, Monoszlai B, Hauri C P 2014Phys. Rev. Lett. 112 213901
计量
- 文章访问数: 71
- PDF下载量: 1
- 被引次数: 0