搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究

魏政鸿 云峰 丁文 黄亚平 王宏 李强 张烨 郭茂峰 刘硕 吴红斌

引用本文:
Citation:

低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究

魏政鸿, 云峰, 丁文, 黄亚平, 王宏, 李强, 张烨, 郭茂峰, 刘硕, 吴红斌

Reflective Ni/Ag/Ti/Au electrode with low specific contact resistivity

Wei Zheng-Hong, Yun Feng, Ding Wen, Huang Ya-Ping, Wang Hong, Li Qiang, Zhang Ye, Guo Mao-Feng, Liu Shuo, Wu Hong-Bin
PDF
导出引用
  • 研究了Ag的厚度、退火时间、沉积温度对于Ni/Ag/Ti/Au电极的反射率及与p-GaN欧姆接触性能的影响. 利用分光光度计测量反射率, 采用圆形传输线模型计算比接触电阻率. 结果表明: 随着Ag厚度的增加, Ni/Ag/Ti/Au电极的反射率逐渐增大; 在氧气氛围中, 随着退火时间从1 min增至10 min, 300 ℃退火时, 比接触电阻率持续下降, 而对于400-600 ℃退火, 比接触电阻率先减小后增大; 在300和400 ℃氧气中进行1-10 min 的退火后, Ni/Ag/Ti/Au的反射率变化较小, 退火温度高于400 ℃时, 随着退火时间的增加, 反射率急剧下降; 在400 ℃氧气中3 min退火后, 比接触电阻率可以达到3.6×10-3 Ω·cm2. 此外, 适当提高沉积温度可以增加Ni/Ag/Ti/Au的反射率并降低比接触电阻率, 沉积温度为120 ℃条件下的Ni/Ag/Ti/Au电极在450 nm处反射率达到90.1%, 比接触电阻率为6.4×10-3 Ω·cm2. 综合考虑电学和光学性能, 在沉积温度为120 ℃下蒸镀Ni/Ag/Ti/Au (1/200/100/100 nm)并在400 ℃氧气中进行3 min退火可以得到较优化的电极. 利用此电极制作的垂直结构发光二极管在350 mA电流下的工作电压为2.95 V, 输出光功率为387.1 mW, 电光转换效率达到37.5%.
    The specific contact resistivity and reflectivity of Ni/Ag/Ti/Au contact with p-GaN are studied. It is found that the thickness of Ag, anneal time and deposition temperature have a great effect on the performance of Ni/Ag/Ti/Au electrode. Its optical reflectivity is measured by reflectivity spectrophotometer, and its specific contact resistivity is calculated by circular transmission line model. It is observed that the contact reflectivity values of Ni (1 nm)/Ag/Ti (100 nm)/Au (100 nm), when the thickness values of Ag are 25 nm and 50 nm, are low: their values are 68.5% and 82.1% at 450 nm, respectively, and they start to increase with increasing the Ag thickness, then reach their saturated values when Ag thickness is beyond 200 nm. When the anneal time changes from 1 min to 10 min in oxygen atmosphere, the specific contact resistivity decreases at 300 ℃, decreases further and then increases at 400-600 ℃. After annealing at temperatures at 300 ℃ and 400 ℃ in oxygen atmosphere, the contact reflectivity value of Ni/Ag/Ti/Au remains almost unchanged, even when anneal time increases from 1 min to 10 min. However, The contact reflectivity of Ni/Ag/Ti/Au decreases significantly after annealing at a temperature higher than 400 ℃ and it becomes smaller with longer annealing time. After 400 ℃ annealing in oxygen atmosphere for 3 min, the specific contact resistivity reaches 3.6×10-3 Ω·cm2. Additionally, the deposition temperature of Ni/Ag is investigated. It is noticed that the specific contact resistivity decreases and the reflectivity increases with increasing the deposition temperature from room temperature to 120 ℃. The reflectivity rises to 90.1% at 450 nm and the specific contact resistivity reaches 6.4×10-3Ω·cm2 for the Ni/Ag/Ti/Au electrode at a deposition temperature of 120 ℃. However, the effects of improving the electrical and optical characteristics weaken when deposition temperature changes from 120 ℃ to 140 ℃. With a overall consideration, Ni (1 nm)/Ag (200 nm)/Ti (100 nm)/Au (100 nm) is made at a deposition temperature of 120 ℃, and then anneals at 400 ℃ for 3 min in oxygen atmosphere to achieve the optimized electrode. The vertical light emitting diode with this Ni/Ag/Ti/Au electrode is fabricated. Its working voltage is 2.95 V and the light output power is 387.1 mW at 350 mA. The electro-optical conversion efficiency reaches 37.5%.
    • 基金项目: 国家高技术研究发展计划(批准号:2014AA032608)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032608).
    [1]

    Greco G, Prystawko P, Leszczynski M, Nigro R L, Raineri V, Roccaforte F 2011 J. Appl. Phys. 110 123703

    [2]

    Lin D W, Lee C Y, Liu C Y, Han H V, Lan Y P, Lin C C, Chi G C, Kuo H C 2012 Appl. Phys. Lett. 101 233104

    [3]

    Xiong J Y, Zhao F, Fan G H, Xu Y Q, Liu X P, Song J J, Ding B B, Zhang T, Zheng S W 2013 Chin. Phys. B 22 118504

    [4]

    Yang B, Guo Z Y, Xie N, Zhang P J, Li J, Li F Z, Lin H, Zheng H, Cai J X 2014 Chin. Phys. B 23 048502

    [5]

    Kim H, Kim K K, Choi K K, Kim H, Song J O, Cho J, Baik K H, Sone C, Park Y, Seong T Y 2007 Appl. Phys. Lett. 91 023510

    [6]

    Jeon J W, Seong T Y, Kim H, Kim K K 2009 Appl. Phys. Lett. 94 042102

    [7]

    Feng F F, Liu J L, Qiu C, Wang G X, Jiang F Y 2010 Acta Phys. Sin. 59 5706 (in Chinese) [封飞飞, 刘军林, 邱冲, 王光绪, 江风益 2010 物理学报 59 5706]

    [8]

    Liu J L, Feng F F, Zhou Y H, Zhang J L, Jiang F Y 2011 Appl. Phys. Lett. 99 111112

    [9]

    Magdenko L, Patriarche G, Troadec D, Mauguin O, Morvan E, di Forte-Poisson M A, Pantzas K, Ougazzaden A, Martinez A, Ramdane A 2012 J. Vac. Sci. Technol. B 30 022205

    [10]

    Guo D B, Liang M, Fan M N, Shi H W, Liu Z Q, Wang G H, Wang L C 2007 Chin. J. Semiconductors 28 1811 (in Chinese) [郭德博, 梁萌, 范曼宁, 师宏伟, 刘志强, 王国宏, 王良臣 2007 半导体学报 28 1811]

    [11]

    Jeon J W, Yum W S, Oh S, Kim K K, Seong T Y 2012 Appl. Phys. Lett. 101 021115

    [12]

    Huang Y P, Yun F, Ding W, Wang Y, Wang H, Zhao Y K, Zhang Y, Guo M F, Hou X, Liu S 2014 Acta Phys. Sin. 63 127302 (in Chinese) [黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕 2014 物理学报 63 127302]

    [13]

    Julita S K, Szymon G, Elzbieta L S, Ryszard P, Grzegorz N, Michal L, Piotr P, Ewa T, Jan K, Stanislaw K 2010 Solid State Electron. 54 701

    [14]

    Qiao D, Yu L S, Lau S S, Lin J Y, Jiang H X, Haynes T E 2000 J. Appl. Phys. 88 4196

    [15]

    Chary I, Chandolu A, Borisov B, Kuryatkov V, Nikishin S, Holtz M 2009 J. Electron. Mater. 38 545

    [16]

    Jiang F, Cai L E, Zhang J Y, Zhang B P 2010 Physica E 42 2420

    [17]

    Jang H W, Lee J L 2004 Appl. Phys. Lett. 85 5920

    [18]

    Tian T, Wang L C, Guo E Q, Liu Z Q, Zhan T, Guo J X, Yi X Y, Li J, Wang G H 2014 J. Phys. D: Appl. Phys. 47 115102

    [19]

    Mashaiekhy J, Shafieizadeh Z, Nahidi H 2012 Eur. Phys. J. Appl. Phys. 60 20301

    [20]

    Song Y H, Son J H, Yu H K, Lee J H, Jung G H, Lee J Y, Lee J L 2011 Cryst. Growth Des. 11 2559

    [21]

    Kim S, Jang J H, Lee J S 2007 J. Electrochem. Soc. 154 973

    [22]

    Son J H, Yu H K, Song Y H, Kim B J, Lee J L 2011 Cryst. Growth Des. 11 4943

    [23]

    Chou C H, Lin C L, Chuang Y C, Bor H Y, Liu C Y 2007 Appl. Phys. Lett. 90 022103

  • [1]

    Greco G, Prystawko P, Leszczynski M, Nigro R L, Raineri V, Roccaforte F 2011 J. Appl. Phys. 110 123703

    [2]

    Lin D W, Lee C Y, Liu C Y, Han H V, Lan Y P, Lin C C, Chi G C, Kuo H C 2012 Appl. Phys. Lett. 101 233104

    [3]

    Xiong J Y, Zhao F, Fan G H, Xu Y Q, Liu X P, Song J J, Ding B B, Zhang T, Zheng S W 2013 Chin. Phys. B 22 118504

    [4]

    Yang B, Guo Z Y, Xie N, Zhang P J, Li J, Li F Z, Lin H, Zheng H, Cai J X 2014 Chin. Phys. B 23 048502

    [5]

    Kim H, Kim K K, Choi K K, Kim H, Song J O, Cho J, Baik K H, Sone C, Park Y, Seong T Y 2007 Appl. Phys. Lett. 91 023510

    [6]

    Jeon J W, Seong T Y, Kim H, Kim K K 2009 Appl. Phys. Lett. 94 042102

    [7]

    Feng F F, Liu J L, Qiu C, Wang G X, Jiang F Y 2010 Acta Phys. Sin. 59 5706 (in Chinese) [封飞飞, 刘军林, 邱冲, 王光绪, 江风益 2010 物理学报 59 5706]

    [8]

    Liu J L, Feng F F, Zhou Y H, Zhang J L, Jiang F Y 2011 Appl. Phys. Lett. 99 111112

    [9]

    Magdenko L, Patriarche G, Troadec D, Mauguin O, Morvan E, di Forte-Poisson M A, Pantzas K, Ougazzaden A, Martinez A, Ramdane A 2012 J. Vac. Sci. Technol. B 30 022205

    [10]

    Guo D B, Liang M, Fan M N, Shi H W, Liu Z Q, Wang G H, Wang L C 2007 Chin. J. Semiconductors 28 1811 (in Chinese) [郭德博, 梁萌, 范曼宁, 师宏伟, 刘志强, 王国宏, 王良臣 2007 半导体学报 28 1811]

    [11]

    Jeon J W, Yum W S, Oh S, Kim K K, Seong T Y 2012 Appl. Phys. Lett. 101 021115

    [12]

    Huang Y P, Yun F, Ding W, Wang Y, Wang H, Zhao Y K, Zhang Y, Guo M F, Hou X, Liu S 2014 Acta Phys. Sin. 63 127302 (in Chinese) [黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕 2014 物理学报 63 127302]

    [13]

    Julita S K, Szymon G, Elzbieta L S, Ryszard P, Grzegorz N, Michal L, Piotr P, Ewa T, Jan K, Stanislaw K 2010 Solid State Electron. 54 701

    [14]

    Qiao D, Yu L S, Lau S S, Lin J Y, Jiang H X, Haynes T E 2000 J. Appl. Phys. 88 4196

    [15]

    Chary I, Chandolu A, Borisov B, Kuryatkov V, Nikishin S, Holtz M 2009 J. Electron. Mater. 38 545

    [16]

    Jiang F, Cai L E, Zhang J Y, Zhang B P 2010 Physica E 42 2420

    [17]

    Jang H W, Lee J L 2004 Appl. Phys. Lett. 85 5920

    [18]

    Tian T, Wang L C, Guo E Q, Liu Z Q, Zhan T, Guo J X, Yi X Y, Li J, Wang G H 2014 J. Phys. D: Appl. Phys. 47 115102

    [19]

    Mashaiekhy J, Shafieizadeh Z, Nahidi H 2012 Eur. Phys. J. Appl. Phys. 60 20301

    [20]

    Song Y H, Son J H, Yu H K, Lee J H, Jung G H, Lee J Y, Lee J L 2011 Cryst. Growth Des. 11 2559

    [21]

    Kim S, Jang J H, Lee J S 2007 J. Electrochem. Soc. 154 973

    [22]

    Son J H, Yu H K, Song Y H, Kim B J, Lee J L 2011 Cryst. Growth Des. 11 4943

    [23]

    Chou C H, Lin C L, Chuang Y C, Bor H Y, Liu C Y 2007 Appl. Phys. Lett. 90 022103

计量
  • 文章访问数:  1820
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-19
  • 修回日期:  2015-01-18
  • 刊出日期:  2015-06-05

低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究

  • 1. 西安交通大学, 电子物理与器件教育部重点实验室, 陕西省信息光子技术重点实验室, 西安 710049;
  • 2. 西安交通大学固态照明工程研究中心, 西安 710049;
  • 3. 陕西新光源科技有限责任公司, 西安 710077
    基金项目: 

    国家高技术研究发展计划(批准号:2014AA032608)资助的课题.

摘要: 研究了Ag的厚度、退火时间、沉积温度对于Ni/Ag/Ti/Au电极的反射率及与p-GaN欧姆接触性能的影响. 利用分光光度计测量反射率, 采用圆形传输线模型计算比接触电阻率. 结果表明: 随着Ag厚度的增加, Ni/Ag/Ti/Au电极的反射率逐渐增大; 在氧气氛围中, 随着退火时间从1 min增至10 min, 300 ℃退火时, 比接触电阻率持续下降, 而对于400-600 ℃退火, 比接触电阻率先减小后增大; 在300和400 ℃氧气中进行1-10 min 的退火后, Ni/Ag/Ti/Au的反射率变化较小, 退火温度高于400 ℃时, 随着退火时间的增加, 反射率急剧下降; 在400 ℃氧气中3 min退火后, 比接触电阻率可以达到3.6×10-3 Ω·cm2. 此外, 适当提高沉积温度可以增加Ni/Ag/Ti/Au的反射率并降低比接触电阻率, 沉积温度为120 ℃条件下的Ni/Ag/Ti/Au电极在450 nm处反射率达到90.1%, 比接触电阻率为6.4×10-3 Ω·cm2. 综合考虑电学和光学性能, 在沉积温度为120 ℃下蒸镀Ni/Ag/Ti/Au (1/200/100/100 nm)并在400 ℃氧气中进行3 min退火可以得到较优化的电极. 利用此电极制作的垂直结构发光二极管在350 mA电流下的工作电压为2.95 V, 输出光功率为387.1 mW, 电光转换效率达到37.5%.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回