搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同退火方式对Ni/SiC接触界面性质的影响

卢吴越 张永平 陈之战 程越 谈嘉慧 石旺舟

引用本文:
Citation:

不同退火方式对Ni/SiC接触界面性质的影响

卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟

Effect of different annealing treatment methods on the Ni/SiC contact interface properties

Lu Wu-Yue, Zhang Yong-Ping, Chen Zhi-Zhan, Cheng Yue, Tan Jia-Hui, Shi Wang-Zhou
PDF
导出引用
  • 采用快速热退火(rapid thermal annealing, RTA)法和脉冲激光辐照退火(laser spark annealing, LSA)法, 在n型4H-SiC的Si面制备出Ni电极欧姆接触. 经传输线法测得RTA样品与LSA样品的比接触电阻分别为5.2×10-4 Ω·cm2, 1.8× 10-4 Ω·cm2. 使用扫描电子显微镜、原子力显微镜、透射电子显微镜、拉曼光谱等表征手段, 比较了两种退火方式对电极表面形貌、电极/衬底截面形貌和元素成分分布、SiC衬底近表层碳团簇微结构的影响. 结果表明, 相比于RTA, LSA法制备出的欧姆接触在电极表面形貌、界面形貌、电极层组分均匀性等方面都具有明显优势, 有望使LSA成为一种非常有潜力的制备欧姆接触的退火处理方法.
    Nickle ohmic contacts on the Si-face of n-type 4H-SiC are prepared by both rapid thermal annealing (RTA) and laser spark annealing (LSA). The effects of the different annealing procedures on the cathode surface morphology, cathode/substrate cross sectional morphology, element composition, microscopic structure of carbon clusters in the SiC substrate near surface, are characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), transmission electron microscopy (TEM), and Raman spectra, respectively. The tests and analyses show that both thermal treatments can help to form ohmic contacts. The specific contact resistances of RTA sample and LSA sample are measured to be 5.2× 10-4 Ω ·cm2 and 1.8× 10-4Ω·cm2 by transmission line model, respectively. The Ni film of RTA sample shrinks badly thus forms tiny islands on the surface, while the surface of LSA sample remains relatively smooth. The root-mean-square (RMS) values of surface roughness of the Ni films of as-deposited, RTA and LSA samples are 8.65 nm, 91.3 nm and 17.5 nm, respectively. The Ni/SiC interface of RTA sample corrodes badly, and Si can be found in the whole Ni film, indicating an overall consumption of Ni to react with Si forming NiSi compounds; C atoms, which do not react with Ni atoms,cluster to the average size of about 40 Å, and gather approximately as a layer located about 20-30 nm off the Ni/SiC interface. The Ni/SiC interface of LSA sample is relatively smooth, and a small quantity of Ni atoms diffuse into the SiC wafer, forming lots of ternary phase diffusion zones of about tens of nanometers deep into the SiC wafer, in which C, Si, Ni atoms are distributed uniformly; the average size of C clusters is smaller than that in RTA sample and no obvious C enriched zone was found, while neither Si atom nor C atom is found to diffuse into the Ni film.#br#The ohmic contacts prepared by LSA have obvious advantages compared with those by RTA in many aspects such as cathode surface morphology, interface morphology, uniformity of components in cathode films, etc. All the results mentioned above make LSA a promising method of thermal treatment in preparation of ohmic contacts.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB326402)、上海市教委科研创新项目(批准号: 13ZZ108)和上海市科委重点支撑项目(批准号: 13520502700)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB326402), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 13ZZ108), and the Shanghai Science and Technology Commission, China (Grant No. 13520502700).
    [1]

    Marinova T, Kakanakova-Georgieva A, Krastev V, Kakanakov R, Neshev M, Kassamakova L, Noblanc O, Arnodo C, Cassette S, Brylinski C, Pecz B, Radnoczi G, Vincze G 1997 Mater. Sci. Eng. B 46 223

    [2]

    Zhou T Y, Liu X C, Dai C C, Huang W, Zhou S Y, Shi E W 2014 Mater. Sci. Eng. B 188 59

    [3]

    Huang W, Chen Z Z, Chen B Y, Zhang J Y, Yan C F, Xiao B, Shi E W 2009 Acta Phys. Sin. 58 3443 (in Chinese) [黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏 2009 物理学报 58 3443]

    [4]

    Huang W, Chen Z Z, Chen Y, Shi E W, Zhang J Y, Liu Q F, Liu Q 2010 Acta Phys. Sin. 59 3466 (in Chinese) [黄维, 陈之战, 陈义, 施尔畏, 张静玉, 刘庆峰, 刘茜 2010 物理学报 59 3466]

    [5]

    Zhu B, Bao X M, Li H S, Pan M H, Mao B H, Sheng Y X 1984 J. Semi. 5 554 (in Chinese) [朱兵, 鲍希茂, 李和生, 潘茂洪, 茅保华, 盛永喜 1984 半导体学报 5 554]

    [6]

    Zhou S C, Wang W Y, Lin C L, Xia G Q 1983 Acta Electron. Sin. 1 104 (in Chinese) [邹世昌, 王渭源, 林成鲁, 夏冠群 1983 电子学报 1 104]

    [7]

    Oraby A H, Murakami K, Yuba Y, Gamo K, Namba S, Masuda Y 1981 Appl. Phys. Lett. 38 562

    [8]

    Rupp R, Kern R, Gerlach R 2013 Proceedings of the 25th International Symposium on Power Semiconductor Devices & ICs Kanazawa, Japan, May 26-30, 2013 p51

    [9]

    Kurimoto E, Harima H, Toda T, Sawada M, Iwami M, Nakashima S 2002 J. Appl. Phys. 91 10215

    [10]

    Burton J C, Sun L, Long F H, Feng Z C, Ferguson I T 1999 Phys. Rev. B 59 7282

    [11]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [12]

    Matthews M J, Pimenta M A, Dresselhaus G, Dresselhaus M S, Endo M 1999 Phys. Rev. B 59 6585

  • [1]

    Marinova T, Kakanakova-Georgieva A, Krastev V, Kakanakov R, Neshev M, Kassamakova L, Noblanc O, Arnodo C, Cassette S, Brylinski C, Pecz B, Radnoczi G, Vincze G 1997 Mater. Sci. Eng. B 46 223

    [2]

    Zhou T Y, Liu X C, Dai C C, Huang W, Zhou S Y, Shi E W 2014 Mater. Sci. Eng. B 188 59

    [3]

    Huang W, Chen Z Z, Chen B Y, Zhang J Y, Yan C F, Xiao B, Shi E W 2009 Acta Phys. Sin. 58 3443 (in Chinese) [黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏 2009 物理学报 58 3443]

    [4]

    Huang W, Chen Z Z, Chen Y, Shi E W, Zhang J Y, Liu Q F, Liu Q 2010 Acta Phys. Sin. 59 3466 (in Chinese) [黄维, 陈之战, 陈义, 施尔畏, 张静玉, 刘庆峰, 刘茜 2010 物理学报 59 3466]

    [5]

    Zhu B, Bao X M, Li H S, Pan M H, Mao B H, Sheng Y X 1984 J. Semi. 5 554 (in Chinese) [朱兵, 鲍希茂, 李和生, 潘茂洪, 茅保华, 盛永喜 1984 半导体学报 5 554]

    [6]

    Zhou S C, Wang W Y, Lin C L, Xia G Q 1983 Acta Electron. Sin. 1 104 (in Chinese) [邹世昌, 王渭源, 林成鲁, 夏冠群 1983 电子学报 1 104]

    [7]

    Oraby A H, Murakami K, Yuba Y, Gamo K, Namba S, Masuda Y 1981 Appl. Phys. Lett. 38 562

    [8]

    Rupp R, Kern R, Gerlach R 2013 Proceedings of the 25th International Symposium on Power Semiconductor Devices & ICs Kanazawa, Japan, May 26-30, 2013 p51

    [9]

    Kurimoto E, Harima H, Toda T, Sawada M, Iwami M, Nakashima S 2002 J. Appl. Phys. 91 10215

    [10]

    Burton J C, Sun L, Long F H, Feng Z C, Ferguson I T 1999 Phys. Rev. B 59 7282

    [11]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [12]

    Matthews M J, Pimenta M A, Dresselhaus G, Dresselhaus M S, Endo M 1999 Phys. Rev. B 59 6585

计量
  • 文章访问数:  4284
  • PDF下载量:  489
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-17
  • 修回日期:  2014-12-03
  • 刊出日期:  2015-03-05

不同退火方式对Ni/SiC接触界面性质的影响

  • 1. 上海师范大学, 光电材料与器件实验室, 上海 200234
    基金项目: 国家重点基础研究发展计划(批准号: 2012CB326402)、上海市教委科研创新项目(批准号: 13ZZ108)和上海市科委重点支撑项目(批准号: 13520502700)资助的课题.

摘要: 采用快速热退火(rapid thermal annealing, RTA)法和脉冲激光辐照退火(laser spark annealing, LSA)法, 在n型4H-SiC的Si面制备出Ni电极欧姆接触. 经传输线法测得RTA样品与LSA样品的比接触电阻分别为5.2×10-4 Ω·cm2, 1.8× 10-4 Ω·cm2. 使用扫描电子显微镜、原子力显微镜、透射电子显微镜、拉曼光谱等表征手段, 比较了两种退火方式对电极表面形貌、电极/衬底截面形貌和元素成分分布、SiC衬底近表层碳团簇微结构的影响. 结果表明, 相比于RTA, LSA法制备出的欧姆接触在电极表面形貌、界面形貌、电极层组分均匀性等方面都具有明显优势, 有望使LSA成为一种非常有潜力的制备欧姆接触的退火处理方法.

English Abstract

参考文献 (12)

目录

    /

    返回文章
    返回