搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3C-SiC材料p型掺杂的第一性原理研究

张云 邵晓红 王治强

引用本文:
Citation:

3C-SiC材料p型掺杂的第一性原理研究

张云, 邵晓红, 王治强

A first principle study on p-type doped 3C-SiC

Zhang Yun, Shao Xiao-Hong, Wang Zhi-Qiang
PDF
导出引用
  • 采用基于第一性原理的密度泛函理论平面波超软赝势法,研究了SiC材料p型掺杂的晶体结构和电子结构性质,得到了优化后体系的结构参数,掺杂形成能,能带结构和电子态密度,计算得到掺杂B,Al,Ga在不同浓度下的禁带宽度.结果表明:随着掺杂B原子浓度的增大,禁带宽度随之减小;而随着掺杂Al,Ga原子浓度的增大,禁带宽度随之增大;在相同浓度下,掺杂Ga的禁带宽度大于掺杂Al,掺Al禁带宽度大于掺B.
    The geometrical and electronic structures, the dopant formation energies, lattice constants, band structure and density of states of p-type SiC are calculated by the first principles of plane wave ultra-soft pseudo-potential method based on density functional theory. The band structures of different concentrations of B, Al and Ga are calculated. The results of the electronic structure show that the band gap narrows with the increase of doping concentration of B and the band gap widens with the increase of doping concentration of Al and Ga. At the same concentration the band gap of Ga doped SiC is wider than that of Al doped SiC, the band gap of Al doped SiC is wider than B doped SiC.
    • 基金项目: 国家自然科学基金重点项目(批准号:No.20736002)资助的课题.
    [1]

    Lee K K, Ishida Y 2003 IEEE Electron Dev. Lett. 24 466

    [2]

    Okamoto M , Suzuki S , Kato M 2004 IEEE Electron Dev. Lett.25 405

    [3]

    Lv M Y, Chen Z W, Li L X, Liu R P 2006 Acta Phys. Sin.553576 (in Chinese) [吕梦雅、陈洲文、李立新、刘日平 2008 物理学报 55 3576]

    [4]

    Nelson W E, Halden F A, Rosengreen A 1966 J Appl. Phys.37 333

    [5]

    Neudeck P G, Larkin D J, Starr J E, Powell J A, Salupo C, Matus L G 1994 IEEE Trans. Electron Dev.41 826

    [6]

    Bimberg D, Altarelli M, Lipari N O 1981 Solid State Commun. 40 437

    [7]

    Goldberg Yu, Levinshtein M E, Rumyantsev S L 2001 Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, SiGe (New York: John Wiley and Sons) p93

    [8]

    Ruff M, Mitlehner H, Helbig R 1994 IEEE Trans. Electron Dev. 41 1040

    [9]

    Lambrecht W R L, Segall B, Suttrop W, Yoganathan M, Devaty R P, Choyke W J, Edmond J A, Powell J A, Alouani M 1993 Appl. Phys. Lett. 63 2747

    [10]

    Song J X, Yang Y T, Chai C C, Liu H X, Ding R X 2008 Journal of Xidian University 35 (in Chinese) [宋久旭、杨银堂、柴长春、刘红霞、丁瑞雪 2008 西安电子科技大学学报 35]

    [11]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [12]

    Kresse G, Furthmuller J 1996 Comput. Mat. Sci. 6 15

    [13]

    Kresse G, Furthmuller J 1996 Phys. Rev. B54 11169

    [14]

    Quyang X F, Shi S Q, Quyang C Y, Jiang D Y, Liu D S 2007 Chin. Phys. 16 3042

    [15]

    Li X B, Shi E W, Chen Z Z, Xiao B 2008 Jinorg Mater 23 238 (in Chinese) [李祥彪、施尔畏、陈之战、肖 兵 2008 无机材料学报 23 238]

    [16]

    Baumeier B, Kruger P, Pollmann J 2006 Phys. Rev. B 73 195205

    [17]

    Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phic. 107 215

    [18]

    Ching X Y, Xu Y N, Rulis P, Ouyang L Z 2006 Mater. Sci. Eng. A 422 147

    [19]

    Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 561687 (in Chinese) [耶红刚、陈光德、竹有章、张俊武 2007 物理学报 56 1687]

  • [1]

    Lee K K, Ishida Y 2003 IEEE Electron Dev. Lett. 24 466

    [2]

    Okamoto M , Suzuki S , Kato M 2004 IEEE Electron Dev. Lett.25 405

    [3]

    Lv M Y, Chen Z W, Li L X, Liu R P 2006 Acta Phys. Sin.553576 (in Chinese) [吕梦雅、陈洲文、李立新、刘日平 2008 物理学报 55 3576]

    [4]

    Nelson W E, Halden F A, Rosengreen A 1966 J Appl. Phys.37 333

    [5]

    Neudeck P G, Larkin D J, Starr J E, Powell J A, Salupo C, Matus L G 1994 IEEE Trans. Electron Dev.41 826

    [6]

    Bimberg D, Altarelli M, Lipari N O 1981 Solid State Commun. 40 437

    [7]

    Goldberg Yu, Levinshtein M E, Rumyantsev S L 2001 Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, SiGe (New York: John Wiley and Sons) p93

    [8]

    Ruff M, Mitlehner H, Helbig R 1994 IEEE Trans. Electron Dev. 41 1040

    [9]

    Lambrecht W R L, Segall B, Suttrop W, Yoganathan M, Devaty R P, Choyke W J, Edmond J A, Powell J A, Alouani M 1993 Appl. Phys. Lett. 63 2747

    [10]

    Song J X, Yang Y T, Chai C C, Liu H X, Ding R X 2008 Journal of Xidian University 35 (in Chinese) [宋久旭、杨银堂、柴长春、刘红霞、丁瑞雪 2008 西安电子科技大学学报 35]

    [11]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [12]

    Kresse G, Furthmuller J 1996 Comput. Mat. Sci. 6 15

    [13]

    Kresse G, Furthmuller J 1996 Phys. Rev. B54 11169

    [14]

    Quyang X F, Shi S Q, Quyang C Y, Jiang D Y, Liu D S 2007 Chin. Phys. 16 3042

    [15]

    Li X B, Shi E W, Chen Z Z, Xiao B 2008 Jinorg Mater 23 238 (in Chinese) [李祥彪、施尔畏、陈之战、肖 兵 2008 无机材料学报 23 238]

    [16]

    Baumeier B, Kruger P, Pollmann J 2006 Phys. Rev. B 73 195205

    [17]

    Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phic. 107 215

    [18]

    Ching X Y, Xu Y N, Rulis P, Ouyang L Z 2006 Mater. Sci. Eng. A 422 147

    [19]

    Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 561687 (in Chinese) [耶红刚、陈光德、竹有章、张俊武 2007 物理学报 56 1687]

计量
  • 文章访问数:  7236
  • PDF下载量:  1045
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-20
  • 修回日期:  2009-12-17
  • 刊出日期:  2010-04-05

3C-SiC材料p型掺杂的第一性原理研究

  • 1. (1)北京化工大学理学院,北京 100029; (2)中国科学院光电研究院,北京 100190
    基金项目: 国家自然科学基金重点项目(批准号:No.20736002)资助的课题.

摘要: 采用基于第一性原理的密度泛函理论平面波超软赝势法,研究了SiC材料p型掺杂的晶体结构和电子结构性质,得到了优化后体系的结构参数,掺杂形成能,能带结构和电子态密度,计算得到掺杂B,Al,Ga在不同浓度下的禁带宽度.结果表明:随着掺杂B原子浓度的增大,禁带宽度随之减小;而随着掺杂Al,Ga原子浓度的增大,禁带宽度随之增大;在相同浓度下,掺杂Ga的禁带宽度大于掺杂Al,掺Al禁带宽度大于掺B.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回