搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄带隙超晶格中载流子俄歇寿命和碰撞电离率的第一性原理研究

孙伟峰 李美成 赵连城

引用本文:
Citation:

窄带隙超晶格中载流子俄歇寿命和碰撞电离率的第一性原理研究

孙伟峰, 李美成, 赵连城

First-principles investigation of carrier Auger lifetime and impact ionization rate in narrow-gap superlattices

Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng
PDF
导出引用
  • 通过第一性原理的完整形式,基于全势能线性化增广平面波方法确定的精确能带结构和波函数,推算了技术上极为重要的窄带隙半导体超晶格中载流子俄歇复合时间.少数载流子的俄歇寿命由两种相关的方法来确定:1)由Fermi-金规则直接估算,2)联系俄歇复合和其相反过程碰撞电离,建立细致平衡公式,在一个统一的结构中进行间接估算.在n掺杂HgTe/CdTe和InAs/InxGa1-xSb超晶格中,由直接和间接的方法确定的寿命与一些实验结果相当一致.这说明该计算模式可以作为一种精确的手段用于窄带隙超晶格材料的性能优化.
    We investigate theoretically the technologically essential Auger recombination lifetime in narrow-gap semiconductor superlattices by means of a completely first-principles formalism, based on accurate energy bands and wave functions provided by the full-potential linearized augmented plane wave scheme. The minority carrier Auger lifetimes are determined by two correlated approaches: (1) direct evaluation in Fermi's golden rule, and (2) indirect evaluation, based on a detailed balance formulation relating Auger recombination and its inverse process, impact ionization, in a unified framework. Lifetimes determined by the direct and indirect methods for n -doped HgTe/CdTe and InAs/InxGa1-xSb superlattices exhibit excellent consistency with experimentally measured values. This justifies the computational formalism as a new sensitive tool in performance optimization of the synthetic narrow-gap semiconductor superlattice systems.
    • 基金项目: 国家自然科学基金(批准号:50502014,50972032),国家高技术研究发展计划(批准号:2009AA03Z407)资助的课题.
    [1]

    Seidl A, Grling A, Vogl P, Majewski J A, Levy M 1996 Phys. Rev. B 53 3764

    [2]

    Sher A, Schilfgaarde M V, Berding M A, Krishnamurthy S, Chen A B 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G5.1

    [3]

    Wimmer E, Krakauer H, Weinert M, Freeman A J 1981 Phys. Rev. B 24 864

    [4]

    Jansen H J F, Freeman A J 1984 Phys. Rev. B 30 561

    [5]

    Franceschetti A, Zunger A 1999 Nature (London) 402 60

    [6]

    Landsberg P T 1991 Recombination in Semiconductors (Cambridge: Cambridge University Press)

    [7]

    Picozzi S S, Asahi R, Geller C B, Continenza A, Freeman A J 2002 Phys. Rev. B 65 113206

    [8]

    Zhao M W, Xia Y Y, Ma Y C, Ying M J, Liu X D, Liu P J, Mei L G 2002 Chem. Phys. Lett. 360 436

    [9]

    Arbuznikov A V, Kaupp M 2003 Chem. Phys. Lett. 381 495

    [10]

    Smith C, Abram R A, Burt M G 1985 Superlattice. Microst. 1 119

    [11]

    Flatté M E, Grein C H, hasenberg T C, Anson S A, Jang D J, Olesberg J T 1999 Phys. Rev. B 59 5745

    [12]

    Sano N, Yoshii A 1992 Phys. Rev. B 45 4171

    [13]

    Williams C J, Corbin E, Jaros M, Herbert D C 1998 Physica B 254 240

    [14]

    Grein C H, Young P M, Ehrenreich H 1992 Appl. Phys. Lett. 61 2905

    [15]

    Cappellini G, Sole R D, Reining L, Bechstedt F 1993 Phys. Rev. B 47 9892

    [16]

    Harrison D, Abram R A, Brand S 1999 J. Appl. Phys. 85 8178; 8186

    [17]

    Asahi R, Mannstadt W, Freeman A J 1999 Phys. Rev. B 59 7486

    [18]

    Asahi R, Mannstadt W ,Freeman A J 2000 Phys. Rev. B 62 2552

    [19]

    Geller C B, Wolf W, Picozzi S, Continenza A, Asahi R, Mannstadt W, Freeman A J, Wimmer E 2001 Appl. Phys. Lett. 79 368

    [20]

    Harrison D, Abram R A, Brand S 1999 J. Appl. Phys. 85 8186

    [21]

    Polkovnikov A S, Zegrya G G 1998 Phys. Rev. B 58 4039

    [22]

    Grein C H, Ehrenreich H 2003 J. Appl. Phys. 93 1075

    [23]

    Haug A 1988 J. Phys. Chem. Solids 49 599

    [24]

    Hahn Y 1997 Phys. Lett. A 231 82

    [25]

    Krishnamurthy S, Sher A, Chen A B 1997 J. Appl. Phys. 82 5540

    [26]

    Metzger W K, Wanlass M W, Ellingson R J, Ahrenkiel R K, Carapella J J 2001 Appl. Phys. Lett. 79 3272

    [27]

    Shin S H, Arias J M, Zandian M, Pasko J G, Bajaj J, DeWames R E 1992 Appl. Phys. Lett. 61 1196

    [28]

    Qiu Y M, He L, Li J, Yuan S X 1993 Appl. Phys. Lett. 62 1134

    [29]

    Grein C H, Jung H, Singh R, Flatté M E 2005 J. Electron. Mater. 34 905

    [30]

    Reisinger A R, Harris K A, Myers T H, Yanka R W, Mohnkern L M, Hoffman C A 1992 Appl. Phys. Lett. 61 699

    [31]

    Youngdale E R, Meyer J R, Hoffman C A, Bartoll F J, Grein C H, Young P M, Ehrenreich H, Miles R H, Chow D H 1994 Appl. Phys. Lett. 64 3160

    [32]

    Grein C H, Young P M, Flatté M E, Ehrenreich H 1995 J. Appl. Phys. 78 7143

    [33]

    Roosbroeck W V, Shockley W 1954 Phys. Rev. 94 1558

  • [1]

    Seidl A, Grling A, Vogl P, Majewski J A, Levy M 1996 Phys. Rev. B 53 3764

    [2]

    Sher A, Schilfgaarde M V, Berding M A, Krishnamurthy S, Chen A B 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G5.1

    [3]

    Wimmer E, Krakauer H, Weinert M, Freeman A J 1981 Phys. Rev. B 24 864

    [4]

    Jansen H J F, Freeman A J 1984 Phys. Rev. B 30 561

    [5]

    Franceschetti A, Zunger A 1999 Nature (London) 402 60

    [6]

    Landsberg P T 1991 Recombination in Semiconductors (Cambridge: Cambridge University Press)

    [7]

    Picozzi S S, Asahi R, Geller C B, Continenza A, Freeman A J 2002 Phys. Rev. B 65 113206

    [8]

    Zhao M W, Xia Y Y, Ma Y C, Ying M J, Liu X D, Liu P J, Mei L G 2002 Chem. Phys. Lett. 360 436

    [9]

    Arbuznikov A V, Kaupp M 2003 Chem. Phys. Lett. 381 495

    [10]

    Smith C, Abram R A, Burt M G 1985 Superlattice. Microst. 1 119

    [11]

    Flatté M E, Grein C H, hasenberg T C, Anson S A, Jang D J, Olesberg J T 1999 Phys. Rev. B 59 5745

    [12]

    Sano N, Yoshii A 1992 Phys. Rev. B 45 4171

    [13]

    Williams C J, Corbin E, Jaros M, Herbert D C 1998 Physica B 254 240

    [14]

    Grein C H, Young P M, Ehrenreich H 1992 Appl. Phys. Lett. 61 2905

    [15]

    Cappellini G, Sole R D, Reining L, Bechstedt F 1993 Phys. Rev. B 47 9892

    [16]

    Harrison D, Abram R A, Brand S 1999 J. Appl. Phys. 85 8178; 8186

    [17]

    Asahi R, Mannstadt W, Freeman A J 1999 Phys. Rev. B 59 7486

    [18]

    Asahi R, Mannstadt W ,Freeman A J 2000 Phys. Rev. B 62 2552

    [19]

    Geller C B, Wolf W, Picozzi S, Continenza A, Asahi R, Mannstadt W, Freeman A J, Wimmer E 2001 Appl. Phys. Lett. 79 368

    [20]

    Harrison D, Abram R A, Brand S 1999 J. Appl. Phys. 85 8186

    [21]

    Polkovnikov A S, Zegrya G G 1998 Phys. Rev. B 58 4039

    [22]

    Grein C H, Ehrenreich H 2003 J. Appl. Phys. 93 1075

    [23]

    Haug A 1988 J. Phys. Chem. Solids 49 599

    [24]

    Hahn Y 1997 Phys. Lett. A 231 82

    [25]

    Krishnamurthy S, Sher A, Chen A B 1997 J. Appl. Phys. 82 5540

    [26]

    Metzger W K, Wanlass M W, Ellingson R J, Ahrenkiel R K, Carapella J J 2001 Appl. Phys. Lett. 79 3272

    [27]

    Shin S H, Arias J M, Zandian M, Pasko J G, Bajaj J, DeWames R E 1992 Appl. Phys. Lett. 61 1196

    [28]

    Qiu Y M, He L, Li J, Yuan S X 1993 Appl. Phys. Lett. 62 1134

    [29]

    Grein C H, Jung H, Singh R, Flatté M E 2005 J. Electron. Mater. 34 905

    [30]

    Reisinger A R, Harris K A, Myers T H, Yanka R W, Mohnkern L M, Hoffman C A 1992 Appl. Phys. Lett. 61 699

    [31]

    Youngdale E R, Meyer J R, Hoffman C A, Bartoll F J, Grein C H, Young P M, Ehrenreich H, Miles R H, Chow D H 1994 Appl. Phys. Lett. 64 3160

    [32]

    Grein C H, Young P M, Flatté M E, Ehrenreich H 1995 J. Appl. Phys. 78 7143

    [33]

    Roosbroeck W V, Shockley W 1954 Phys. Rev. 94 1558

计量
  • 文章访问数:  8480
  • PDF下载量:  897
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-18
  • 修回日期:  2009-12-22
  • 刊出日期:  2010-04-05

/

返回文章
返回