搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC电力电子器件金属接触研究现状与进展

黄玲琴 朱靖 马跃 梁庭 雷程 李永伟 谷晓钢

引用本文:
Citation:

SiC电力电子器件金属接触研究现状与进展

黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢

Research status and progress of metal contacts of SiC power devices

Huang Ling-Qin, Zhu Jing, Ma Yue, Liang Ting, Lei Cheng, Li Yong-Wei, Gu Xiao-Gang
PDF
HTML
导出引用
  • 碳化硅(SiC)半导体具有宽禁带、高临界击穿电场、高热导率等优异性能, 在高温、高频、大功率、低功耗器件领域具有广阔的应用前景, 因此, 高效节能的SiC电力电子器件研究备受关注. 然而, 阻碍SiC器件发展应用的一个重要瓶颈是高性能的金属接触制备困难. 本文通过对比分析SiC器件欧姆接触和肖特基接触制备的研究现状, 揭示了金属/SiC接触界面特性复杂, 肖特基势垒不可控等关键问题; 对金属/SiC接触势垒及界面态性质的研究现状进行分析, 强调了对界面势垒进行有效调控的重要意义; 重点分析了近年来金属/SiC接触界面调控技术方面的重要进展, 同时, 对金属/SiC接触界面态本质及界面调控技术研究未来发展的方向进行了展望.
    Silicon carbide (SiC) is a promising candidate for applications in high temperature, high voltage, high power, and low-power dissipation devices due to its unique properties like wide band gap, high critical electric field, and high thermal conductivity. However, one of the main bottlenecks hindering the SiC power devices from developing and being put into practical application is the fabrication of good metal/SiC contact. In this review, the research status of Ohmic contact and Schottky contact of SiC device are compared and analyzed. The complicated interface properties and uncontrollable barrier height at metal/SiC interface are revealed. In addition, the research status of metal/SiC contact barrier and interface state properties are analyzed, and the important significance of effective control of interface barrier is highlighted. Furthermore, the research progress of metal/SiC contact interface regulation technology is specially analyzed. The future development directions in the nature of metal/SiC interface states and interface control technology are finally prospected.
      通信作者: 梁庭, liangtingnuc@163.com ; 谷晓钢, guxg@jsnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62074071)资助的课题
      Corresponding author: Liang Ting, liangtingnuc@163.com ; Gu Xiao-Gang, guxg@jsnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62074071)
    [1]

    Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology (Singapore: John Wiley & Sons Singapore Pte. Ltd) pp1−538

    [2]

    盛况, 郭清, 张军明, 钱照明 2012 中国电机工程学报 32 1

    Sheng K, Guo Q, Zhang J M, Qian Z M 2012 Proc. Chin. Soc. Elect. Eng. 32 1

    [3]

    She X, Huang A Q, Lucía Ó, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar

    [4]

    Zekentes K 2018 Advancing Silicon Carbide Electronics Technology I: Metal Contacts to Silicon Carbide: Physics, Technology, Applications (Millersville: Materials Research Forum LLC) pp1−238

    [5]

    Gao M M, Hu T T, Chen Z Z 2019 IEEE Trans. Electron Devices 66 3929Google Scholar

    [6]

    He Y J, Lv H L, Tang X Y, Song Q W, Zhang Y M, Han C, Guo T, He X N, Zhang Y M, Zhang Y M 2019 J. Alloys Compd. 805 999Google Scholar

    [7]

    Badila M, Brezeanu G, Millan J, Godignon P, Banu V 2002 Diamond Relat. Mater. 11 1258Google Scholar

    [8]

    Cheng J C, Tsui B Y 2017 IEEE Electron Device Lett. 38 1700Google Scholar

    [9]

    Omar S U, Sudarshan T S, Rana T A, Song H, Chandrashekhar M 2015 IEEE Trans. Electron Devices 62 615Google Scholar

    [10]

    Vivona M, Greco G, Bongiorno C, Nigro R L, Scalese S, Roccaforte F 2017 Appl. Surf. Sci. 420 331Google Scholar

    [11]

    Huang L Q, Liu B B, Zhu Q Z, Chen S H, Gao M C, Qin F W, Wang D J 2012 Appl. Phys. Lett. 100 263503Google Scholar

    [12]

    Huang L Q, Qin F W, Li S J, Wang D J 2013 Appl. Phys. Lett. 103 033520Google Scholar

    [13]

    Liu S B, He Z, Zheng L, Liu B, Zhang F, Dong L, Tian L X, Shen Z W, Wang J Z, Huang Y J, Fan Z C, Liu X F, Yan G G, Zhao W S, Wang L, Sun G S, Yang F H, Zeng Y P 2014 Appl. Phys. Lett. 105 122106Google Scholar

    [14]

    Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar

    [15]

    Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar

    [16]

    Addamiano A 1970 US Patent 3 510 733

    [17]

    Hamad V A, Tannous T A, Soueidan M, Gremillard L, Zaatar Y 2020 Microelectron. Reliab. 110 113694Google Scholar

    [18]

    Zhang Y M, Guo T, Tang X Y, Yang J, He Y J, Zhang Y M 2018 J. Alloys Compd. 731 1267Google Scholar

    [19]

    Kragh-Buetow K C, Okojie R S, Lukco D, Mohney S E 2015 Semicond. Sci. Technol. 30 105019Google Scholar

    [20]

    Okojie R S, Lukco D 2016 J. Appl. Phys. 120 215301Google Scholar

    [21]

    Joo S J, Baek S, Kim S C, Lee J S 2013 J. Electron. Mater. 42 2897Google Scholar

    [22]

    Shimizu H, Shima A, Shimamoto Y, Iwamuro N 2017 Jpn. J. Appl. Phys. 56 04CR15Google Scholar

    [23]

    Sung W, Baliga B J 2016 IEEE Electron Device Lett. 37 1605Google Scholar

    [24]

    Hertel S, Waldmann D, Jobst J, Albert A, Albrecht M, Reshanov S, Sch Ner A, Krieger M, Weber H B 2012 Nat. Commun. 3 957Google Scholar

    [25]

    Kumar S V, Amaral M R, Lukas K, Lars K, Giovanni A 2018 Mater. Sci. Forum 924 413Google Scholar

    [26]

    Wu Y, Ji L F, Lin Z Y, Hong M H, Wang S C, Zhang Y Z 2019 Curr. Appl. Phys. 19 521Google Scholar

    [27]

    Li F, Sharma Y, Walker D, Hindmarsh S, Mawby P 2016 IEEE Electron Device Lett. 37 1189Google Scholar

    [28]

    Wu S Y, Campbell R B 1974 Solid-State Electronics 17 683

    [29]

    Wahab Q, Ellison A, Henry A, Janzén E, Hallin C, Di Persio J, Martinez R 2000 Appl. Phys. Lett. 76 2725Google Scholar

    [30]

    Li J L, Li Y, Wang L, Xu Y, Yang F, Han P, Ji X L 2019 Chin. Phys. B 28 027303Google Scholar

    [31]

    Pristavu G, Brezeanu G, Badila M, Pascu R, Danila M, Godignon P 2015 Appl. Phys. Lett. 106 223704

    [32]

    Cowley A M, Sze S M 1965 Jpn. J. Appl. Phys. 36 3212Google Scholar

    [33]

    Tsui B Y, Cheng J C, Yen C T, Lee C Y 2017 Solid-State Electron. 133 83Google Scholar

    [34]

    Yang Z Y, Wang Y, Li X J, Yang J Q, Shi D K, Cao F 2021 Microelectron. Eng. 239 111531

    [35]

    Song Q W, Zhang Y M, Zhang Y M, Cheng F P, Tang X Y 2011 Chin. Phys. B 20 057301Google Scholar

    [36]

    Lee K Y, Huang Y H 2012 IEEE Trans. Electron Devices 59 694Google Scholar

    [37]

    Han L C, Shen H J, Liu K A, Wang Y Y, Tang Y D, Yun B, Xu H Y 2014 Chin. Phys. B 23 127302Google Scholar

    [38]

    Dong S X, Bai Y, Tang Y D, Chen H, Tian X L, Yang C Y, Liu X Y 2018 Chin. Phys. B 27 97305Google Scholar

    [39]

    Dhar S, Seitz O, Halls M D, Choi S, Chabal Y J, Feldman L C 2009 J. Am. Chem. Soc. 131 16808Google Scholar

    [40]

    Hashimoto K, Doi T, Shibayama S, Nakatsuka O 2020 Jpn. J. Appl. Phys. 59 SGGD16Google Scholar

    [41]

    Zaremba G, Adamus Z, Jung W, Kaminska E, Borysiewicz M A, Korwin-Mikke K 2012 Mater. Sci. Eng. 177 1323Google Scholar

    [42]

    Heine V 1965 Phys. Rev. 138 1689Google Scholar

    [43]

    Mönch W 1994 Control of Semiconductor Interfaces (Amsterdam: Elsevier) pp169−174

    [44]

    Tung R T 2000 Phys. Rev. Lett. 84 6078Google Scholar

    [45]

    Aboelfotoh M O, Fröjdh C, Petersson C S 2003 Phys. Rev. B 67 075312Google Scholar

    [46]

    Gao M, Tsukimoto S, Goss S H, Tumakha S P, Onishi T, Murakami M, Brillson L J 2007 J. Electron. Mater. 36 277Google Scholar

    [47]

    Nakayama T 2019 International Workshop on Junction Technology (IWJT) Kyoto, Japan, June 6–7, 2019 pp1–5

    [48]

    Tsui B Y, Cheng J C, Lee L S, Lee C Y, Tsai M J 2014 Jpn. J. Appl. Phys. 53 04EP10Google Scholar

    [49]

    Brillson L J 2007 J. Vac. Sci. Technol., A 25 943Google Scholar

    [50]

    Roccaforte F, Bongiorno C, Via F L, Raineri V 2004 Appl. Phy. Lett. 85 6152Google Scholar

    [51]

    Çınar K, Coşkun C, Gür E, Aydoğan Ş 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 87Google Scholar

    [52]

    Kozlovski V V, Lebedev A A, Levinshtein M E, Rumyantsev S L, Palmour J W 2017 Appl. Phy. Lett. 110 199

    [53]

    Wang D, Hu R, Chen G, Tang C, Ma Y, Gong M, Yu G, Gao S, Li Y, Huang M, Yang Z 2021 Nucl. Instrum. Meth. B 491 52Google Scholar

    [54]

    Adelmann B, Hürner A, Schlegel T, Bauer A J, Frey L, Hellmann R 2013 J. Laser Micro/Nanoeng. 8 97Google Scholar

    [55]

    Lin Z Y, Ji L F, Wu Y, Hu L T, Yan T Y, Sun Z Y 2019 Appl. Surf. Sci. 469 68Google Scholar

    [56]

    Zhou Z W, Zhang Z Z, He W W, Hao J Y, Sun J, Zhang F, Zheng Z D 2020 Mater. Sci. Forum 1004 712Google Scholar

    [57]

    Gorji M S, Cheong K Y 2015 Crit. Rev. Solid State Mater. Sci. 40 197Google Scholar

    [58]

    Kang M S, Ahn J J, Moon K S, Koo S M 2012 Nanoscale Res. Lett. 7 75Google Scholar

    [59]

    Zheng H, Mahajan B K, Su S C, Mukherjee S, Gangopadhyay K, Gangopadhyay S 2016 Sci. Rep. 6 25234Google Scholar

    [60]

    Gorji M S, Cheong K Y 2015 Appl. Phy. A 118 315Google Scholar

    [61]

    Choi G, Yoon H H, Jung S, Jeon Y, Lee J Y, Bahng W, Park K 2015 Appl. Phys. Lett. 107 1480

    [62]

    Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 225301Google Scholar

    [63]

    Shi D K, Wang Y, Wu X, Yang Z Y, Li X J, Yang J Q, Cao F 2021 Solid-State Electron. 180 107992Google Scholar

    [64]

    Triendl F, Pfusterschmied G, Berger C, Schwarz S, Artner W, Schmid U 2021 Thin Solid Films 721 138539Google Scholar

    [65]

    Seyller T 2004 J. Phys. Condens. Matter 16 S1755Google Scholar

    [66]

    Losurdo M, Bruno G, Brown A, Kim T H 2004 Appl. Phy. Lett. 84 4011Google Scholar

    [67]

    Huang L Q, Gu X G 2019 Semicond. Sci. Technol. 34 015011Google Scholar

    [68]

    Huang L Q, Gu X G 2019 J. Appl. Phys. 125 025301Google Scholar

    [69]

    Cichoň S, Machác P, Barda B, Sofer Z 2011 Microelectron. Eng. 88 553Google Scholar

    [70]

    Kwietniewski N, Sochacki M, Szmidt J, Guziewicz M, Kaminska E, Piotrowska A 2008 Appl. Surf. Sci. 254 8106Google Scholar

  • 图 1  (a) 经激光辐射的Au/4H-SiC接触I-V特性曲线; (b) 相应的肖特基势垒高度值柱状图[55]

    Fig. 1.  (a) I-V curve of Au/4H-SiC contacts with laser irradiation; (b) histograms of corresponding Schottky barrier height values[55].

    图 2  Ni/TiO2/p-type 4H-SiC接触 (a) 结构及 (b) 能带图[61]

    Fig. 2.  Schematic illustration of the contact (a) structure and (b) energy band diagram of Ni/TiO2/p-type 4H-SiC[61].

    图 3  经不同表面处理后的XPS (a) Si 2p; (b) C 1s谱[67]

    Fig. 3.  XPS spectra of p-type 4H-SiC surfaces with different pretreatments: (a) Si 2p spectra; (b) C 1s spectra[67].

  • [1]

    Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology (Singapore: John Wiley & Sons Singapore Pte. Ltd) pp1−538

    [2]

    盛况, 郭清, 张军明, 钱照明 2012 中国电机工程学报 32 1

    Sheng K, Guo Q, Zhang J M, Qian Z M 2012 Proc. Chin. Soc. Elect. Eng. 32 1

    [3]

    She X, Huang A Q, Lucía Ó, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar

    [4]

    Zekentes K 2018 Advancing Silicon Carbide Electronics Technology I: Metal Contacts to Silicon Carbide: Physics, Technology, Applications (Millersville: Materials Research Forum LLC) pp1−238

    [5]

    Gao M M, Hu T T, Chen Z Z 2019 IEEE Trans. Electron Devices 66 3929Google Scholar

    [6]

    He Y J, Lv H L, Tang X Y, Song Q W, Zhang Y M, Han C, Guo T, He X N, Zhang Y M, Zhang Y M 2019 J. Alloys Compd. 805 999Google Scholar

    [7]

    Badila M, Brezeanu G, Millan J, Godignon P, Banu V 2002 Diamond Relat. Mater. 11 1258Google Scholar

    [8]

    Cheng J C, Tsui B Y 2017 IEEE Electron Device Lett. 38 1700Google Scholar

    [9]

    Omar S U, Sudarshan T S, Rana T A, Song H, Chandrashekhar M 2015 IEEE Trans. Electron Devices 62 615Google Scholar

    [10]

    Vivona M, Greco G, Bongiorno C, Nigro R L, Scalese S, Roccaforte F 2017 Appl. Surf. Sci. 420 331Google Scholar

    [11]

    Huang L Q, Liu B B, Zhu Q Z, Chen S H, Gao M C, Qin F W, Wang D J 2012 Appl. Phys. Lett. 100 263503Google Scholar

    [12]

    Huang L Q, Qin F W, Li S J, Wang D J 2013 Appl. Phys. Lett. 103 033520Google Scholar

    [13]

    Liu S B, He Z, Zheng L, Liu B, Zhang F, Dong L, Tian L X, Shen Z W, Wang J Z, Huang Y J, Fan Z C, Liu X F, Yan G G, Zhao W S, Wang L, Sun G S, Yang F H, Zeng Y P 2014 Appl. Phys. Lett. 105 122106Google Scholar

    [14]

    Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar

    [15]

    Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar

    [16]

    Addamiano A 1970 US Patent 3 510 733

    [17]

    Hamad V A, Tannous T A, Soueidan M, Gremillard L, Zaatar Y 2020 Microelectron. Reliab. 110 113694Google Scholar

    [18]

    Zhang Y M, Guo T, Tang X Y, Yang J, He Y J, Zhang Y M 2018 J. Alloys Compd. 731 1267Google Scholar

    [19]

    Kragh-Buetow K C, Okojie R S, Lukco D, Mohney S E 2015 Semicond. Sci. Technol. 30 105019Google Scholar

    [20]

    Okojie R S, Lukco D 2016 J. Appl. Phys. 120 215301Google Scholar

    [21]

    Joo S J, Baek S, Kim S C, Lee J S 2013 J. Electron. Mater. 42 2897Google Scholar

    [22]

    Shimizu H, Shima A, Shimamoto Y, Iwamuro N 2017 Jpn. J. Appl. Phys. 56 04CR15Google Scholar

    [23]

    Sung W, Baliga B J 2016 IEEE Electron Device Lett. 37 1605Google Scholar

    [24]

    Hertel S, Waldmann D, Jobst J, Albert A, Albrecht M, Reshanov S, Sch Ner A, Krieger M, Weber H B 2012 Nat. Commun. 3 957Google Scholar

    [25]

    Kumar S V, Amaral M R, Lukas K, Lars K, Giovanni A 2018 Mater. Sci. Forum 924 413Google Scholar

    [26]

    Wu Y, Ji L F, Lin Z Y, Hong M H, Wang S C, Zhang Y Z 2019 Curr. Appl. Phys. 19 521Google Scholar

    [27]

    Li F, Sharma Y, Walker D, Hindmarsh S, Mawby P 2016 IEEE Electron Device Lett. 37 1189Google Scholar

    [28]

    Wu S Y, Campbell R B 1974 Solid-State Electronics 17 683

    [29]

    Wahab Q, Ellison A, Henry A, Janzén E, Hallin C, Di Persio J, Martinez R 2000 Appl. Phys. Lett. 76 2725Google Scholar

    [30]

    Li J L, Li Y, Wang L, Xu Y, Yang F, Han P, Ji X L 2019 Chin. Phys. B 28 027303Google Scholar

    [31]

    Pristavu G, Brezeanu G, Badila M, Pascu R, Danila M, Godignon P 2015 Appl. Phys. Lett. 106 223704

    [32]

    Cowley A M, Sze S M 1965 Jpn. J. Appl. Phys. 36 3212Google Scholar

    [33]

    Tsui B Y, Cheng J C, Yen C T, Lee C Y 2017 Solid-State Electron. 133 83Google Scholar

    [34]

    Yang Z Y, Wang Y, Li X J, Yang J Q, Shi D K, Cao F 2021 Microelectron. Eng. 239 111531

    [35]

    Song Q W, Zhang Y M, Zhang Y M, Cheng F P, Tang X Y 2011 Chin. Phys. B 20 057301Google Scholar

    [36]

    Lee K Y, Huang Y H 2012 IEEE Trans. Electron Devices 59 694Google Scholar

    [37]

    Han L C, Shen H J, Liu K A, Wang Y Y, Tang Y D, Yun B, Xu H Y 2014 Chin. Phys. B 23 127302Google Scholar

    [38]

    Dong S X, Bai Y, Tang Y D, Chen H, Tian X L, Yang C Y, Liu X Y 2018 Chin. Phys. B 27 97305Google Scholar

    [39]

    Dhar S, Seitz O, Halls M D, Choi S, Chabal Y J, Feldman L C 2009 J. Am. Chem. Soc. 131 16808Google Scholar

    [40]

    Hashimoto K, Doi T, Shibayama S, Nakatsuka O 2020 Jpn. J. Appl. Phys. 59 SGGD16Google Scholar

    [41]

    Zaremba G, Adamus Z, Jung W, Kaminska E, Borysiewicz M A, Korwin-Mikke K 2012 Mater. Sci. Eng. 177 1323Google Scholar

    [42]

    Heine V 1965 Phys. Rev. 138 1689Google Scholar

    [43]

    Mönch W 1994 Control of Semiconductor Interfaces (Amsterdam: Elsevier) pp169−174

    [44]

    Tung R T 2000 Phys. Rev. Lett. 84 6078Google Scholar

    [45]

    Aboelfotoh M O, Fröjdh C, Petersson C S 2003 Phys. Rev. B 67 075312Google Scholar

    [46]

    Gao M, Tsukimoto S, Goss S H, Tumakha S P, Onishi T, Murakami M, Brillson L J 2007 J. Electron. Mater. 36 277Google Scholar

    [47]

    Nakayama T 2019 International Workshop on Junction Technology (IWJT) Kyoto, Japan, June 6–7, 2019 pp1–5

    [48]

    Tsui B Y, Cheng J C, Lee L S, Lee C Y, Tsai M J 2014 Jpn. J. Appl. Phys. 53 04EP10Google Scholar

    [49]

    Brillson L J 2007 J. Vac. Sci. Technol., A 25 943Google Scholar

    [50]

    Roccaforte F, Bongiorno C, Via F L, Raineri V 2004 Appl. Phy. Lett. 85 6152Google Scholar

    [51]

    Çınar K, Coşkun C, Gür E, Aydoğan Ş 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 87Google Scholar

    [52]

    Kozlovski V V, Lebedev A A, Levinshtein M E, Rumyantsev S L, Palmour J W 2017 Appl. Phy. Lett. 110 199

    [53]

    Wang D, Hu R, Chen G, Tang C, Ma Y, Gong M, Yu G, Gao S, Li Y, Huang M, Yang Z 2021 Nucl. Instrum. Meth. B 491 52Google Scholar

    [54]

    Adelmann B, Hürner A, Schlegel T, Bauer A J, Frey L, Hellmann R 2013 J. Laser Micro/Nanoeng. 8 97Google Scholar

    [55]

    Lin Z Y, Ji L F, Wu Y, Hu L T, Yan T Y, Sun Z Y 2019 Appl. Surf. Sci. 469 68Google Scholar

    [56]

    Zhou Z W, Zhang Z Z, He W W, Hao J Y, Sun J, Zhang F, Zheng Z D 2020 Mater. Sci. Forum 1004 712Google Scholar

    [57]

    Gorji M S, Cheong K Y 2015 Crit. Rev. Solid State Mater. Sci. 40 197Google Scholar

    [58]

    Kang M S, Ahn J J, Moon K S, Koo S M 2012 Nanoscale Res. Lett. 7 75Google Scholar

    [59]

    Zheng H, Mahajan B K, Su S C, Mukherjee S, Gangopadhyay K, Gangopadhyay S 2016 Sci. Rep. 6 25234Google Scholar

    [60]

    Gorji M S, Cheong K Y 2015 Appl. Phy. A 118 315Google Scholar

    [61]

    Choi G, Yoon H H, Jung S, Jeon Y, Lee J Y, Bahng W, Park K 2015 Appl. Phys. Lett. 107 1480

    [62]

    Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 225301Google Scholar

    [63]

    Shi D K, Wang Y, Wu X, Yang Z Y, Li X J, Yang J Q, Cao F 2021 Solid-State Electron. 180 107992Google Scholar

    [64]

    Triendl F, Pfusterschmied G, Berger C, Schwarz S, Artner W, Schmid U 2021 Thin Solid Films 721 138539Google Scholar

    [65]

    Seyller T 2004 J. Phys. Condens. Matter 16 S1755Google Scholar

    [66]

    Losurdo M, Bruno G, Brown A, Kim T H 2004 Appl. Phy. Lett. 84 4011Google Scholar

    [67]

    Huang L Q, Gu X G 2019 Semicond. Sci. Technol. 34 015011Google Scholar

    [68]

    Huang L Q, Gu X G 2019 J. Appl. Phys. 125 025301Google Scholar

    [69]

    Cichoň S, Machác P, Barda B, Sofer Z 2011 Microelectron. Eng. 88 553Google Scholar

    [70]

    Kwietniewski N, Sochacki M, Szmidt J, Guziewicz M, Kaminska E, Piotrowska A 2008 Appl. Surf. Sci. 254 8106Google Scholar

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 不同相NbS2与GeS2构成的二维金属-半导体异质结的电接触性质. 物理学报, 2024, 73(13): 137102. doi: 10.7498/aps.73.20240530
    [2] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [3] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [4] 毕思涵, 宋建军, 张栋, 张士琦. 2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管. 物理学报, 2022, 71(20): 208401. doi: 10.7498/aps.71.20220855
    [5] 梁前, 钱国林, 罗祥燕, 梁永超, 谢泉. 外电场和双轴应变对MoSH/WSi2N4肖特基结势垒的调控. 物理学报, 2022, 71(21): 217301. doi: 10.7498/aps.71.20220882
    [6] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [7] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [8] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [9] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [10] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [11] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [12] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响. 物理学报, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [13] 王晓勇, 种明, 赵德刚, 苏艳梅. p-GaN/p-AlxGa1-xN异质结界面处二维空穴气的性质及其对欧姆接触的影响. 物理学报, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [14] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [15] 封飞飞, 刘军林, 邱冲, 王光绪, 江风益. 硅衬底GaN基LED N极性n型欧姆接触研究. 物理学报, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [16] 黄维, 陈之战, 陈义, 施尔畏, 张静玉, 刘庆峰, 刘茜. 组合材料方法研究膜厚对Ni/SiC电极接触性质的影响. 物理学报, 2010, 59(5): 3466-3472. doi: 10.7498/aps.59.3466
    [17] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用. 物理学报, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [18] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压. 物理学报, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [19] 王 源, 张义门, 张玉明, 汤晓燕. 6H-SiC肖特基源漏MOSFET的模拟仿真研究. 物理学报, 2003, 52(10): 2553-2557. doi: 10.7498/aps.52.2553
    [20] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
计量
  • 文章访问数:  8552
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-11
  • 修回日期:  2021-06-27
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-10-20

/

返回文章
返回