-
鉴于实验上最新合成的二维半导体材料WSi2N4(WSN)和二维金属材料MoSH(MSH), 构建了金属-半导体MSH/WSN肖特基结. 在实际的金属-半导体接触应用中, 肖特基势垒的存在严重降低了器件的性能. 因此, 获得较小的肖特基势垒甚至是欧姆接触至关重要. 本文使用第一性原理计算研究了在外电场和双轴应变作用下MSH/WSN肖特基结势垒的变化. 计算结果表明, 外电场和双轴应变均可以有效地调控MSH/WSN肖特基结势垒. 正向外电场能实现MSH/WSN肖特基结p型与n型肖特基接触之间的动态转化, 而负向外电场可实现MSH/WSN肖特基结向欧姆接触的转化. 此外, 较大的双轴应变可实现MSH/WSN肖特基结p型与n型肖特基接触的相互转化. 此项工作为基于WSN半导体的肖特基功能器件及场效应晶体管提供理论指导.In view of the newly synthesized two-dimensional (2D) semiconductor material WSi2N4 (WSN) and the 2D metal material MoSH (MSH), a metal-semiconductor MSH/WSN Schottky-junction is constructed in this work. In practical applications of metal-semiconductor contact, the presence of the Schottky barrier degrades the device performance severely. Therefore, it is crucial to obtain a smaller Schottky barrier height or even an Ohmic contact. Here, the first-principles calculations are used to investigate the variation of the Schottky barrier in MSH/WSN Schottky-junction under an external electric field and a biaxial strain. The results show that both external electric field and biaxial strain can effectively modulate the Schottky barrier of the MSH/WSN Schottky-junction. The dynamic switching between the p-type Schottky contact and the n-type Schottky contact can be achieved under the action of positive external electric field in the MSH/WSN Schottky-junction. Under the action of negative external electric field, the MSH/WSN Schottky-junction can be modulated to realize the transition from the Schottky contact to the Ohmic contact. The large biaxial strain can also induce the MSH/WSN Schottky-junction to realize the transition between the p-type Schottky contact and the n-type Schottky contact. This work may provide theoretical guidance for the WSN semiconductor based Schottky functional devices and field-effect transistors.
-
Keywords:
- WSi2N4 /
- MoSH /
- metal-semiconductor contact /
- Schottky contact
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar
[3] Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar
[4] Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T, Li Y 2017 Extreme Mech. Lett. 13 42Google Scholar
[5] Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T 2011 Nano Lett. 11 2396Google Scholar
[6] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
[7] Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar
[8] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar
[9] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[10] Liu L, Feng Y, Shen Z 2003 Phys. Rev. B 68 104102Google Scholar
[11] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar
[12] Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834Google Scholar
[13] Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar
[14] Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y 2010 Nano Lett. 10 4134Google Scholar
[15] Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K 2017 Nat. Nanotechnol. 12 1124Google Scholar
[16] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar
[17] Pomerantseva E, Gogotsi Y 2017 Nat. Energy 2 17089
[18] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar
[19] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M 2020 Science 369 670Google Scholar
[20] Wu Q, Cao L, Ang Y S, Ang L K 2021 Appl. Phys. Lett. 118 113102Google Scholar
[21] Qian W, Chen Z, Zhang J, Yin L 2022 J. Mater. Sci. Technol. 99 215Google Scholar
[22] Zang Y, Wu Q, Du W, Dai Y, Huang B, Ma Y 2021 Phys. Rev. Mater. 5 045801Google Scholar
[23] Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A 2020 ACS Nano 14 3896Google Scholar
[24] Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K 2021 ACS Nano 15 20319Google Scholar
[25] Liu X, Gao P, Hu W, Yang J 2020 J. Phys. Chem. Lett. 11 4070Google Scholar
[26] Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar
[27] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar
[28] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[29] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[30] Li Q, Zhou W, Wan X, Zhou J 2021 Physica E 131 114753Google Scholar
[31] Wang Q, Cao L, Liang S J, Wu W, Wang G, Lee C H, Ong W L, Yang H Y, Ang L K, Yang S A 2021 npj 2D Mater. Appl. 5 1Google Scholar
-
图 3 (a) MHS/WSN与(d) MSH/WSN肖特基结的投影能带结构; (b) MHS/WSN与(e) MSH/WSN肖特基结的两个界面之间沿Z平面的平面平均差分电荷密度; (c) MHS/WSN与(f) MSH/WSN肖特基结的有效静电势. 其中绿色和黄色线条分别代表了MSH和WSN对肖特基结的贡献, 费米能级被设置为0点
Fig. 3. Projected band structures of (a) MHS/WSN and (d) MSH/WSN Schottky-junctions. Plane-averaged differential charge densities between two interfaces along Z-plane of (b) MHS/WSN and (e) MSH/WSN Schottky-junctions. The effective electrostatic potential of (c) MHS/WSN and (f) MSH/WSN Schottky-junctions. The green and yellow lines represent the contributions of MSH and WSN, respectively. The Fermi level is set to zero.
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar
[3] Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar
[4] Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T, Li Y 2017 Extreme Mech. Lett. 13 42Google Scholar
[5] Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T 2011 Nano Lett. 11 2396Google Scholar
[6] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
[7] Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar
[8] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar
[9] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[10] Liu L, Feng Y, Shen Z 2003 Phys. Rev. B 68 104102Google Scholar
[11] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar
[12] Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834Google Scholar
[13] Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar
[14] Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y 2010 Nano Lett. 10 4134Google Scholar
[15] Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K 2017 Nat. Nanotechnol. 12 1124Google Scholar
[16] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar
[17] Pomerantseva E, Gogotsi Y 2017 Nat. Energy 2 17089
[18] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar
[19] Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M 2020 Science 369 670Google Scholar
[20] Wu Q, Cao L, Ang Y S, Ang L K 2021 Appl. Phys. Lett. 118 113102Google Scholar
[21] Qian W, Chen Z, Zhang J, Yin L 2022 J. Mater. Sci. Technol. 99 215Google Scholar
[22] Zang Y, Wu Q, Du W, Dai Y, Huang B, Ma Y 2021 Phys. Rev. Mater. 5 045801Google Scholar
[23] Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A 2020 ACS Nano 14 3896Google Scholar
[24] Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K 2021 ACS Nano 15 20319Google Scholar
[25] Liu X, Gao P, Hu W, Yang J 2020 J. Phys. Chem. Lett. 11 4070Google Scholar
[26] Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar
[27] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar
[28] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[29] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[30] Li Q, Zhou W, Wan X, Zhou J 2021 Physica E 131 114753Google Scholar
[31] Wang Q, Cao L, Liang S J, Wu W, Wang G, Lee C H, Ong W L, Yang H Y, Ang L K, Yang S A 2021 npj 2D Mater. Appl. 5 1Google Scholar
计量
- 文章访问数: 4811
- PDF下载量: 121
- 被引次数: 0