搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ReSe2/WSe2记忆晶体管的光电调控和阻变特性

余雪玲 陈凤翔 相韬 邓文 刘嘉宁 汪礼胜

引用本文:
Citation:

ReSe2/WSe2记忆晶体管的光电调控和阻变特性

余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜

Photoelectric modulation and resistive switching characteristic of ReSe2/WSe2 memtransistor

Yu Xue-Ling, Chen Feng-Xiang, Xiang Tao, Deng Wen, Liu Jia-Ning, Wang Li-Sheng
PDF
HTML
导出引用
  • 记忆晶体管是结合了忆阻器和场效应晶体管特点的多端口器件. 二维过渡金属硫化物拥有独特的电子结构和性质, 在电子器件、能源转化、存储器等领域都有广泛的应用. 本文以二维金属硫化物为基础, 制备了ReSe2/WSe2双p型的范德瓦耳斯异质结记忆晶体管, 探究其在电控、光控以及光电协控下的阻变特性变化. 结果表明: 栅压是调控记忆晶体管性能的重要手段, 可有效地调控开关比在101—105之间变化; 不同波长光照或者光功率密度的变化可以实现记忆晶体管高低阻态和开关比的调控; 而且, 光电协控也可使器件开关比在102—105范围内变化, 并分析了不同调控条件下器件阻态变化的原因. 此外, 在经历了225次循环和1.9 × 104 s时间后, ReSe2/WSe2异质结构记忆晶体管仍能保持接近104的开关比, 表明器件有良好的稳定性和耐久性, 将是一种很有发展潜力的下一代非易失性存储器.
    Memtransistor is a multiterminal device combining the concepts of memristor and field-effect transistor. Two-dimensional transition metal sulfides have unique electronic structure and properties, and they are widely used in electronic devices, energy conversions, memories and other fields. In this work, a two-dimensional ReSe2/WSe2 heterostructure memtransistor is prepared, then the resistive switching characteristics under the electrical modulation, optical modulation, and electric-optical dual gate control are discussed. The results show that the gate control is an effective modulation method, which can change the on/off ratio of the device from 101 to 105. Then, the resistance and on/off ratio of the memtransistor can be controlled by changing the light wavelength and the illumination power. Moreover, the switching ratio of the device can also be changed in a range of 102–105 by electric and light dual-gate control, and the reasons for the change of resistance states of the device under different modulation conditions are analyzed. Furthermore, after 225 cycles and 1.9 × 104 s, the ReSe2/WSe2 heterostructure memtransistor still maintains a switch ratio close to 104, indicating the good stability and durability of the device. It demonstrates that the ReSe2/WSe2 memtransistor will be one of potential candidates for the next- generation nonvolatile memory applications.
      通信作者: 陈凤翔, phonixchen79@whut.edu.cn ; 汪礼胜, wang_lesson@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51702245)、国家重点研发计划(批准号: 2018YFE0111500, 2019YFA0704900)、材料合成与加工先进技术国家重点实验室开放基金(武汉理工大学)(批准号: 2021-KF-16)和中央高校基本科研业务费专项资金(批准号: WUT2021III065JC)资助的课题.
      Corresponding author: Chen Feng-Xiang, phonixchen79@whut.edu.cn ; Wang Li-Sheng, wang_lesson@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51702245), the National Key Research and Development Program of China (Grant Nos. 2018YFE0111500, 2019YFA0704900), the Open Fund Project of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology), China (Grant No. 2021-KF-16), and the Fundamental Research Fund for the Central Universities, China (Grant No. WUT2021III065JC)
    [1]

    Chua L 1971 IEEE Trans. Circuit Theory 5 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Cheng S L, Fan Z, Rao J J, Hong L Q, Huang Q C, Tao R Q, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Yuan G L, Gao X S, Liu J M 2020 Iscience 23 101874Google Scholar

    [4]

    Cui B Y, Fan Z, Li W J, Chen Y H, Dong S, Tan Z W, Cheng S L, Tian B B, Tao R Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2022 Nat. Commun. 13 1707Google Scholar

    [5]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [6]

    Xu X W, Ding Y K, Hu S X B, Niemier M, Cong J, Hu Y, Shi Y Y 2018 Nat. Electron. 1 216Google Scholar

    [7]

    Zeng M Q, Xiao Y, Liu J X, Yang K N, Fu L 2018 Chem. Rev. 118 6236Google Scholar

    [8]

    Nguyen D A, Oh H M, Duong N T, Bang S, Yoon S J, Jeong M S 2018 ACS Appl. Mater. Interfaces 10 10322Google Scholar

    [9]

    Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J H 2016 Nat. Commun. 7 13413Google Scholar

    [10]

    Yoshida M, Suzuki R, Zhang Y, Nakano M, Iwasa Y 2015 Sci. Adv. 1 e1500606Google Scholar

    [11]

    Vu Q A, Kim H, Nguyen V L, Won U Y, Adhikari S, Kim K, Lee Y H, Yu W J 2017 Adv. Mater. 29 1703363Google Scholar

    [12]

    Xu R J, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J, Ham D 2019 Nano Lett. 19 2411Google Scholar

    [13]

    Park M, Park S, Yoo K H 2016 ACS Appl. Mater. Interfaces 8 14046Google Scholar

    [14]

    John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C, Fu Q D, Basu A, Liu Z, Mathews N 2018 Adv. Mater. 30 1800220Google Scholar

    [15]

    Sangwan V K, Lee H S, Bergeron H, Beck M E, Chen K S, Hersam M C, Balla I 2018 Nature 554 500Google Scholar

    [16]

    Zhong Y N, Gao X, Xu J L, Siringhaus H, Wang S D 2020 Adv. Electron. Mater. 6 1900955Google Scholar

    [17]

    邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302Google Scholar

    Deng W, Wang L S, Liu J N, Yu X L, Chen F X 2021 Acta Phys. Sin. 70 217302Google Scholar

    [18]

    Zhang W G, Gao H, Deng C S, Lü T, Hu S H, Hao W, Xue S Y, Tao Y F, Deng L M, Xiong W 2021 Nanoscale 13 11497Google Scholar

    [19]

    Kim M, Ge R J, Wu X H, Lan X, Tice J, Lee J C, Akinwande D 2018 Nat. Commun. 9 2524Google Scholar

    [20]

    Rehman S, Kim H, Khan M F, Hur J H, Eom J, Kim D K 2021 J. Alloys Compd. 855 157310Google Scholar

    [21]

    殷俊 2019 硕士学位论文 (北京: 清华大学)

    Yin J 2019 M. S. Thesis (Beijing: Tsing University) (in Chinese)

    [22]

    Tian X, Liu Y 2021 J. Semicond. 42 032001Google Scholar

    [23]

    Zhou X, Hu X Z, Zhou S S, Song H Y, Zhang Q, Pi L J, Li L, Li H Q, Lü J T, Zhai T Y 2018 Adv. Mater. 30 1703286Google Scholar

    [24]

    Ali M H, Kang D H, Park J H 2017 Org. Electron. 53 14

    [25]

    Li D, Wu B, Zhu X J, Wang J T, Ryu B, Lu W D, Liang X G 2018 ACS Nano 12 9240Google Scholar

    [26]

    Wang L, Liao W G, Wong S L, Yu Z G, Li S F, Lim Y F, Feng X W, Tan W C, Huang X, Chen L, Liu L, Chen J S, Gong X, Zhu C X, Liu X K, Zhang Y W, Chi D Z, Ang K W 2019 Adv. Funct. Mater. 29 1901106Google Scholar

    [27]

    Wang C, Yang S, Xiong W Q, Xia C X, Cai H, Chen B, Wang X T, Zhang X Z, Wei Z M, Tongay S, Li J B, Liu Q 2016 Phys. Chem. Chem. Phys. 18 27750Google Scholar

    [28]

    Wang X T, Huang L, Peng Y T, Huo N J, Wu K D, Xia C X, Wei Z M, Tongay S, Li J B 2016 Nano Res. 9 507Google Scholar

    [29]

    Ahn J, Ko K, Kyhm J H, Ra H S, Bae H, Hong S, Kim D Y, Jang J, Kim T W, Choi S, Kang J H, Kwon N, Park S, Ju B K, Poon T C, Park M C, Im S, Hwang D K 2021 ACS Nano 15 17917Google Scholar

    [30]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732Google Scholar

    [31]

    Jang M H, Agarwal R, Nukala P, Choi D, Johson A T C, Chen I W, Agarwal R 2016 Nano Lett. 16 2139Google Scholar

    [32]

    田学伟, 王永生, 张璐, 刘安琪, 何大伟 2018 中国科技信息 13 98Google Scholar

    Tian X W, Wang Y S, Zhang L, Liu A Q, He D W 2018 Chin. Sci. Technol. Inf. 13 98Google Scholar

    [33]

    Yin S Q, Song C, Sun Y M, Qiao L L, Wang B L, Sun Y F, Liu K, Pan F, Zhang X Z 2019 ACS Appl. Mater. Interfaces 11 43344Google Scholar

    [34]

    张璐 2016 硕士学位论文 (北京: 北京交通大学)

    Zhang L 2016 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [35]

    夏风梁, 石凯熙, 赵东旭, 王云鹏, 范翊, 李金华 2021 发光学报 42 257Google Scholar

    Xia F L, Shi K X, Zhao D X, Wang Y P, Fan Y, Li J H 2021 Chin. J. Lumin. 42 257Google Scholar

  • 图 1  ReSe2/WSe2异质结晶体管的结构图

    Fig. 1.  Structure diagram of the ReSe2/WSe2 heterojunction memtransistor

    图 2  ReSe2/WSe2异质结的形貌表征 (a) ReSe2/WSe2异质结的AFM图; (b) 沿图(a)中白色箭头的厚度数据图; (c) WSe2和ReSe2的拉曼光谱图

    Fig. 2.  Surface topography image of ReSe2/WSe2 heterojunction memtransistor: (a) AFM image of ReSe2/WSe2 heterojunction; (b) height profile of ReSe2/WSe2 along the thin white line in panel (a); (c) Raman spectra of the WSe2 and ReSe2 layer

    图 3  在0 V栅压下, Au/ReSe2/WSe2/Au记忆晶体管的阻变特性 (a) 在不同源漏扫描电压下的Id-Vds特性曲线; (b) 连续225次循环周期下器件在Vds = 2.4 V时的高低阻值变化图; (c) 器件在室温下高低阻态保持特性图

    Fig. 3.  Resistance characteristics of the Au/ReSe2/WSe2/Au memtransistor at Vg = 0 V: (a) Id-Vds characteristic curves of Au/ReSe2/WSe2/Au memtransistor at different source drain sweeping voltages; (b) reversible resistance switching between the HRS and LRS over 225 cycles at Vds = 2.4 V; (c) the retention characteristics of the device at room temperature

    图 4  ReSe2/WSe2记忆晶体管的阻变转换机制分析 (a) ReSe2和WSe2单独的能带图; (b) ReSe2/WSe2异质结的平衡能带图; (c) 负偏置电压下的双对数Id-Vds曲线

    Fig. 4.  Resistance switching mechanism analysis of ReSe2/WSe2 memtransistor: (a) Energy band arrangement for ReSe2 and WSe2; (b) energy band diagram of ReSe2/WSe2 heterojunction; (c) logarithmic Id-Vds curves of the memtransistor in the negative bias region

    图 5  在–1 V < Vg < 1 V范围中, 不同栅压下ReSe2/WSe2记忆晶体管的阻变特性 (a) 负栅压Vg = –0.1— –1 V时的Id-Vds特性曲线; (b) 正栅压Vg = 0.1—1 V时的Id-Vds特性曲线(0 V作为参考)

    Fig. 5.  Resistance characteristics of ReSe2/WSe2 memtransistors at different gate voltages in the range of –1 V < Vg < 1 V: (a) Id-Vds characteristic curves at negative gate voltage Vg = –0.1−–1 V; (b) Id-Vds characteristic curves at positive gate voltage Vg = 0.1−1 V (the black line with Vg = 0 V is as a reference)

    图 6  高栅压(|Vg| > 10 V)时, 不同栅压下Au/ReSe2/WSe2/Au器件的阻变特性 (a) 负栅压Vg = –10—–25 V时的Id-Vds特性曲线(其中0 V曲线作为参考); (b) 正栅压Vg = 10—25 V时的Id-Vds特性曲线

    Fig. 6.  Resistance characteristics of Au/ReSe2/WSe2/Au device at higher gate voltages (|Vg| > 10 V): (a) Id-Vds characteristic curves at negative gate voltages Vg = –10−–25 V (the black line with Vg = 0 V is as a reference) ; (b) Id-Vds characteristic curves at positive gate voltages Vg = 10−25 V

    图 7  Au/ReSe2/WSe2/Au记忆晶体管的简化能带图(Vds < 0) (a) Vg = 0 V; (b) Vg < 0 V; (c) Vg > 0 V

    Fig. 7.  Simplified band diagram of Au/ReSe2/WSe2/Au memtransistor (Vds < 0): (a) Vg = 0 V; (b) Vg < 0 V; (c) Vg > 0 V

    图 8  Au/ReSe2/WSe2/Au器件在不同波长光栅调控下的Id-Vds曲线

    Fig. 8.  Id-Vds curves of the Au/ReSe2/WSe2/Au device under optical modulation with different wavelengths

    图 9  不同波长、不同光强下器件的Id-Vds特性曲线 (a) 500 nm光照; (b) 800 nm光照; (c) 1000 nm光照

    Fig. 9.  Id-Vds curves of the device under different wavelengths and powers: (a) 500 nm illumination; (b) 800 nm illumination; (c) 1000 nm illumination

    图 10  500 nm波长光照和电场同时调控下器件的阻变特性 (a) 负栅压Vg = –5—25 V时的Id-Vds曲线; (b) 正栅压Vg = 5—25 V时的Id-Vds曲线

    Fig. 10.  Resistance characteristics of electric and light dual-gate tunable memtransistor with illumination wavelength of 500 nm: (a) Id-Vds curves at negative gate voltages Vg = –5–25 V; (b) Id-Vds curves at positive gate voltages Vg = 5–25 V

    图 11  光场和电场的双栅协控下, Au/ReSe2/WSe2/Au记忆晶体管特性 (a) 器件的高低阻态随栅压、波长的变化; (b) 开关比随栅压、波长的变化

    Fig. 11.  Electric and light dual-gate tunable Au/ReSe2/WSe2/Au memtransistor: (a) The high and low resistance states of the devices under different gate voltages and different incident wavelengths; (b) on/off ratio of the devices under different gate voltages and different incident wavelengths.

    表 1  不同正栅压下器件的详细参数

    Table 1.  Detailed parameters of the device under different positive gate voltages

    栅压 Vg/V
    01102025
    HRS阻
    值/Ω
    6.31 ×
    1011
    4.36 ×
    1011
    1.20 ×
    1010
    8.75 ×
    108
    5.26 ×
    108
    LRS阻
    值/Ω
    2.37 ×
    106
    4.31 ×
    106
    5.59 ×
    106
    9.66 ×
    106
    1.12 ×
    107
    开关比2.66 ×
    105
    1.01 ×
    105
    2.14 ×
    103
    9.06 ×
    101
    4.70 ×
    101
    下载: 导出CSV
  • [1]

    Chua L 1971 IEEE Trans. Circuit Theory 5 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Cheng S L, Fan Z, Rao J J, Hong L Q, Huang Q C, Tao R Q, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Yuan G L, Gao X S, Liu J M 2020 Iscience 23 101874Google Scholar

    [4]

    Cui B Y, Fan Z, Li W J, Chen Y H, Dong S, Tan Z W, Cheng S L, Tian B B, Tao R Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2022 Nat. Commun. 13 1707Google Scholar

    [5]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [6]

    Xu X W, Ding Y K, Hu S X B, Niemier M, Cong J, Hu Y, Shi Y Y 2018 Nat. Electron. 1 216Google Scholar

    [7]

    Zeng M Q, Xiao Y, Liu J X, Yang K N, Fu L 2018 Chem. Rev. 118 6236Google Scholar

    [8]

    Nguyen D A, Oh H M, Duong N T, Bang S, Yoon S J, Jeong M S 2018 ACS Appl. Mater. Interfaces 10 10322Google Scholar

    [9]

    Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J H 2016 Nat. Commun. 7 13413Google Scholar

    [10]

    Yoshida M, Suzuki R, Zhang Y, Nakano M, Iwasa Y 2015 Sci. Adv. 1 e1500606Google Scholar

    [11]

    Vu Q A, Kim H, Nguyen V L, Won U Y, Adhikari S, Kim K, Lee Y H, Yu W J 2017 Adv. Mater. 29 1703363Google Scholar

    [12]

    Xu R J, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J, Ham D 2019 Nano Lett. 19 2411Google Scholar

    [13]

    Park M, Park S, Yoo K H 2016 ACS Appl. Mater. Interfaces 8 14046Google Scholar

    [14]

    John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C, Fu Q D, Basu A, Liu Z, Mathews N 2018 Adv. Mater. 30 1800220Google Scholar

    [15]

    Sangwan V K, Lee H S, Bergeron H, Beck M E, Chen K S, Hersam M C, Balla I 2018 Nature 554 500Google Scholar

    [16]

    Zhong Y N, Gao X, Xu J L, Siringhaus H, Wang S D 2020 Adv. Electron. Mater. 6 1900955Google Scholar

    [17]

    邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302Google Scholar

    Deng W, Wang L S, Liu J N, Yu X L, Chen F X 2021 Acta Phys. Sin. 70 217302Google Scholar

    [18]

    Zhang W G, Gao H, Deng C S, Lü T, Hu S H, Hao W, Xue S Y, Tao Y F, Deng L M, Xiong W 2021 Nanoscale 13 11497Google Scholar

    [19]

    Kim M, Ge R J, Wu X H, Lan X, Tice J, Lee J C, Akinwande D 2018 Nat. Commun. 9 2524Google Scholar

    [20]

    Rehman S, Kim H, Khan M F, Hur J H, Eom J, Kim D K 2021 J. Alloys Compd. 855 157310Google Scholar

    [21]

    殷俊 2019 硕士学位论文 (北京: 清华大学)

    Yin J 2019 M. S. Thesis (Beijing: Tsing University) (in Chinese)

    [22]

    Tian X, Liu Y 2021 J. Semicond. 42 032001Google Scholar

    [23]

    Zhou X, Hu X Z, Zhou S S, Song H Y, Zhang Q, Pi L J, Li L, Li H Q, Lü J T, Zhai T Y 2018 Adv. Mater. 30 1703286Google Scholar

    [24]

    Ali M H, Kang D H, Park J H 2017 Org. Electron. 53 14

    [25]

    Li D, Wu B, Zhu X J, Wang J T, Ryu B, Lu W D, Liang X G 2018 ACS Nano 12 9240Google Scholar

    [26]

    Wang L, Liao W G, Wong S L, Yu Z G, Li S F, Lim Y F, Feng X W, Tan W C, Huang X, Chen L, Liu L, Chen J S, Gong X, Zhu C X, Liu X K, Zhang Y W, Chi D Z, Ang K W 2019 Adv. Funct. Mater. 29 1901106Google Scholar

    [27]

    Wang C, Yang S, Xiong W Q, Xia C X, Cai H, Chen B, Wang X T, Zhang X Z, Wei Z M, Tongay S, Li J B, Liu Q 2016 Phys. Chem. Chem. Phys. 18 27750Google Scholar

    [28]

    Wang X T, Huang L, Peng Y T, Huo N J, Wu K D, Xia C X, Wei Z M, Tongay S, Li J B 2016 Nano Res. 9 507Google Scholar

    [29]

    Ahn J, Ko K, Kyhm J H, Ra H S, Bae H, Hong S, Kim D Y, Jang J, Kim T W, Choi S, Kang J H, Kwon N, Park S, Ju B K, Poon T C, Park M C, Im S, Hwang D K 2021 ACS Nano 15 17917Google Scholar

    [30]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732Google Scholar

    [31]

    Jang M H, Agarwal R, Nukala P, Choi D, Johson A T C, Chen I W, Agarwal R 2016 Nano Lett. 16 2139Google Scholar

    [32]

    田学伟, 王永生, 张璐, 刘安琪, 何大伟 2018 中国科技信息 13 98Google Scholar

    Tian X W, Wang Y S, Zhang L, Liu A Q, He D W 2018 Chin. Sci. Technol. Inf. 13 98Google Scholar

    [33]

    Yin S Q, Song C, Sun Y M, Qiao L L, Wang B L, Sun Y F, Liu K, Pan F, Zhang X Z 2019 ACS Appl. Mater. Interfaces 11 43344Google Scholar

    [34]

    张璐 2016 硕士学位论文 (北京: 北京交通大学)

    Zhang L 2016 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [35]

    夏风梁, 石凯熙, 赵东旭, 王云鹏, 范翊, 李金华 2021 发光学报 42 257Google Scholar

    Xia F L, Shi K X, Zhao D X, Wang Y P, Fan Y, Li J H 2021 Chin. J. Lumin. 42 257Google Scholar

  • [1] 李岩, 陈鑫力, 王伟胜, 石智文, 竺立强. 蛋壳膜电解质栅控氧化物神经形态晶体管. 物理学报, 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [2] 郑军, 马力, 李春雷, 袁瑞旸, 郭亚涛, 付旭日. 自旋偏压驱动的硅烯和锗烯光控晶体管. 物理学报, 2022, 71(19): 198502. doi: 10.7498/aps.71.20221047
    [3] 余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜. ReSe2/WSe2记忆晶体管的光电调控和阻变特性研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221154
    [4] 缑石龙, 马武英, 姚志斌, 何宝平, 盛江坤, 薛院院, 潘琛. 基于栅控横向PNP双极晶体管的氢氛围中辐照损伤机制. 物理学报, 2021, 70(15): 156101. doi: 10.7498/aps.70.20210351
    [5] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究. 物理学报, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [6] 柴金华, 陈飞. 准平行光干涉的滤波型多抖动相控方法研究. 物理学报, 2018, 67(1): 014202. doi: 10.7498/aps.67.20171562
    [7] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器. 物理学报, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [8] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武. 硅基全光宽带太赫兹幅度调制器的研究. 物理学报, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [9] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯. 栅控横向PNP双极晶体管基极电流峰值展宽效应及电荷分离研究. 物理学报, 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [10] 朱德明, 门传玲, 曹敏, 吴国栋. 基于P掺杂SiO2为栅介质的超低压侧栅薄膜晶体管. 物理学报, 2013, 62(11): 117305. doi: 10.7498/aps.62.117305
    [11] 周建伟, 梁静秋, 梁中翥, 田超, 秦余欣, 王维彪. 光控液晶光子晶体微腔全光开关. 物理学报, 2013, 62(13): 134208. doi: 10.7498/aps.62.134208
    [12] 李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声. 栅控电子枪中轮辐栅网截止放大系数的研究. 物理学报, 2012, 61(7): 078502. doi: 10.7498/aps.61.078502
    [13] 席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪. 栅控横向PNP双极晶体管辐照感生电荷的定量分离. 物理学报, 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [14] 席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静. 中带电压法分离栅控横向pnp双极晶体管辐照感生缺. 物理学报, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [15] 郭展, 范飞, 白晋军, 牛超, 常胜江. 基于磁光子晶体的磁控可调谐太赫兹滤波器和开关. 物理学报, 2011, 60(7): 074218. doi: 10.7498/aps.60.074218
    [16] 王拥军, 吴重庆, 王智, 王亚平, 忻向军. 半导体光放大器引起的光控器件中的信号损伤分析. 物理学报, 2010, 59(6): 4042-4049. doi: 10.7498/aps.59.4042
    [17] 毕海星, 周云松, 赵丽明, 王福合. 光子晶体中的磁控光子开关线路. 物理学报, 2008, 57(9): 5718-5721. doi: 10.7498/aps.57.5718
    [18] 李亚捷, 吴重庆, 王拥军, 唐清善. 基于半导体光放大器的光控器件中控制光的性能分析. 物理学报, 2007, 56(2): 952-957. doi: 10.7498/aps.56.952
    [19] 孟志国, 吴春亚, 李 娟, 熊绍珍, 郭海成, 王 文. 金属诱导单一方向横向晶化薄膜晶体管以及栅控型轻掺杂漏极结构的研究. 物理学报, 2005, 54(7): 3363-3369. doi: 10.7498/aps.54.3363
    [20] 丁瑞钦, 王浩, 于英敏, 王宁娟, 佘卫龙, 李润华, 丘志仁, 罗莉, 蔡志岗, W Y Cheung, S P Wong. 射频磁控共溅射GaAs/SiO2纳米颗粒镶嵌薄膜的光学性质. 物理学报, 2002, 51(4): 882-888. doi: 10.7498/aps.51.882
计量
  • 文章访问数:  4213
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 修回日期:  2022-07-17
  • 上网日期:  2022-10-19
  • 刊出日期:  2022-11-05

/

返回文章
返回