-
记忆晶体管是结合了忆阻器和场效应晶体管特点的多端口器件. 二维过渡金属硫化物拥有独特的电子结构和性质, 在电子器件、能源转化、存储器等领域都有广泛的应用. 本文以二维金属硫化物为基础, 制备了ReSe2/WSe2双p型的范德瓦耳斯异质结记忆晶体管, 探究其在电控、光控以及光电协控下的阻变特性变化. 结果表明: 栅压是调控记忆晶体管性能的重要手段, 可有效地调控开关比在101—105之间变化; 不同波长光照或者光功率密度的变化可以实现记忆晶体管高低阻态和开关比的调控; 而且, 光电协控也可使器件开关比在102—105范围内变化, 并分析了不同调控条件下器件阻态变化的原因. 此外, 在经历了225次循环和1.9 × 104 s时间后, ReSe2/WSe2异质结构记忆晶体管仍能保持接近104的开关比, 表明器件有良好的稳定性和耐久性, 将是一种很有发展潜力的下一代非易失性存储器.
-
关键词:
- ReSe2/WSe2 /
- 记忆晶体管 /
- 栅控 /
- 光控
Memtransistor is a multiterminal device combining the concepts of memristor and field-effect transistor. Two-dimensional transition metal sulfides have unique electronic structure and properties, and they are widely used in electronic devices, energy conversions, memories and other fields. In this work, a two-dimensional ReSe2/WSe2 heterostructure memtransistor is prepared, then the resistive switching characteristics under the electrical modulation, optical modulation, and electric-optical dual gate control are discussed. The results show that the gate control is an effective modulation method, which can change the on/off ratio of the device from 101 to 105. Then, the resistance and on/off ratio of the memtransistor can be controlled by changing the light wavelength and the illumination power. Moreover, the switching ratio of the device can also be changed in a range of 102–105 by electric and light dual-gate control, and the reasons for the change of resistance states of the device under different modulation conditions are analyzed. Furthermore, after 225 cycles and 1.9 × 104 s, the ReSe2/WSe2 heterostructure memtransistor still maintains a switch ratio close to 104, indicating the good stability and durability of the device. It demonstrates that the ReSe2/WSe2 memtransistor will be one of potential candidates for the next- generation nonvolatile memory applications.-
Keywords:
- ReSe2/WSe2 /
- memtransistor /
- gate control /
- optical control
[1] Chua L 1971 IEEE Trans. Circuit Theory 5 507Google Scholar
[2] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar
[3] Cheng S L, Fan Z, Rao J J, Hong L Q, Huang Q C, Tao R Q, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Yuan G L, Gao X S, Liu J M 2020 Iscience 23 101874Google Scholar
[4] Cui B Y, Fan Z, Li W J, Chen Y H, Dong S, Tan Z W, Cheng S L, Tian B B, Tao R Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2022 Nat. Commun. 13 1707Google Scholar
[5] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar
[6] Xu X W, Ding Y K, Hu S X B, Niemier M, Cong J, Hu Y, Shi Y Y 2018 Nat. Electron. 1 216Google Scholar
[7] Zeng M Q, Xiao Y, Liu J X, Yang K N, Fu L 2018 Chem. Rev. 118 6236Google Scholar
[8] Nguyen D A, Oh H M, Duong N T, Bang S, Yoon S J, Jeong M S 2018 ACS Appl. Mater. Interfaces 10 10322Google Scholar
[9] Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J H 2016 Nat. Commun. 7 13413Google Scholar
[10] Yoshida M, Suzuki R, Zhang Y, Nakano M, Iwasa Y 2015 Sci. Adv. 1 e1500606Google Scholar
[11] Vu Q A, Kim H, Nguyen V L, Won U Y, Adhikari S, Kim K, Lee Y H, Yu W J 2017 Adv. Mater. 29 1703363Google Scholar
[12] Xu R J, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J, Ham D 2019 Nano Lett. 19 2411Google Scholar
[13] Park M, Park S, Yoo K H 2016 ACS Appl. Mater. Interfaces 8 14046Google Scholar
[14] John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C, Fu Q D, Basu A, Liu Z, Mathews N 2018 Adv. Mater. 30 1800220Google Scholar
[15] Sangwan V K, Lee H S, Bergeron H, Beck M E, Chen K S, Hersam M C, Balla I 2018 Nature 554 500Google Scholar
[16] Zhong Y N, Gao X, Xu J L, Siringhaus H, Wang S D 2020 Adv. Electron. Mater. 6 1900955Google Scholar
[17] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302Google Scholar
Deng W, Wang L S, Liu J N, Yu X L, Chen F X 2021 Acta Phys. Sin. 70 217302Google Scholar
[18] Zhang W G, Gao H, Deng C S, Lü T, Hu S H, Hao W, Xue S Y, Tao Y F, Deng L M, Xiong W 2021 Nanoscale 13 11497Google Scholar
[19] Kim M, Ge R J, Wu X H, Lan X, Tice J, Lee J C, Akinwande D 2018 Nat. Commun. 9 2524Google Scholar
[20] Rehman S, Kim H, Khan M F, Hur J H, Eom J, Kim D K 2021 J. Alloys Compd. 855 157310Google Scholar
[21] 殷俊 2019 硕士学位论文 (北京: 清华大学)
Yin J 2019 M. S. Thesis (Beijing: Tsing University) (in Chinese)
[22] Tian X, Liu Y 2021 J. Semicond. 42 032001Google Scholar
[23] Zhou X, Hu X Z, Zhou S S, Song H Y, Zhang Q, Pi L J, Li L, Li H Q, Lü J T, Zhai T Y 2018 Adv. Mater. 30 1703286Google Scholar
[24] Ali M H, Kang D H, Park J H 2017 Org. Electron. 53 14
[25] Li D, Wu B, Zhu X J, Wang J T, Ryu B, Lu W D, Liang X G 2018 ACS Nano 12 9240Google Scholar
[26] Wang L, Liao W G, Wong S L, Yu Z G, Li S F, Lim Y F, Feng X W, Tan W C, Huang X, Chen L, Liu L, Chen J S, Gong X, Zhu C X, Liu X K, Zhang Y W, Chi D Z, Ang K W 2019 Adv. Funct. Mater. 29 1901106Google Scholar
[27] Wang C, Yang S, Xiong W Q, Xia C X, Cai H, Chen B, Wang X T, Zhang X Z, Wei Z M, Tongay S, Li J B, Liu Q 2016 Phys. Chem. Chem. Phys. 18 27750Google Scholar
[28] Wang X T, Huang L, Peng Y T, Huo N J, Wu K D, Xia C X, Wei Z M, Tongay S, Li J B 2016 Nano Res. 9 507Google Scholar
[29] Ahn J, Ko K, Kyhm J H, Ra H S, Bae H, Hong S, Kim D Y, Jang J, Kim T W, Choi S, Kang J H, Kwon N, Park S, Ju B K, Poon T C, Park M C, Im S, Hwang D K 2021 ACS Nano 15 17917Google Scholar
[30] Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732Google Scholar
[31] Jang M H, Agarwal R, Nukala P, Choi D, Johson A T C, Chen I W, Agarwal R 2016 Nano Lett. 16 2139Google Scholar
[32] 田学伟, 王永生, 张璐, 刘安琪, 何大伟 2018 中国科技信息 13 98Google Scholar
Tian X W, Wang Y S, Zhang L, Liu A Q, He D W 2018 Chin. Sci. Technol. Inf. 13 98Google Scholar
[33] Yin S Q, Song C, Sun Y M, Qiao L L, Wang B L, Sun Y F, Liu K, Pan F, Zhang X Z 2019 ACS Appl. Mater. Interfaces 11 43344Google Scholar
[34] 张璐 2016 硕士学位论文 (北京: 北京交通大学)
Zhang L 2016 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)
[35] 夏风梁, 石凯熙, 赵东旭, 王云鹏, 范翊, 李金华 2021 发光学报 42 257Google Scholar
Xia F L, Shi K X, Zhao D X, Wang Y P, Fan Y, Li J H 2021 Chin. J. Lumin. 42 257Google Scholar
-
图 2 ReSe2/WSe2异质结的形貌表征 (a) ReSe2/WSe2异质结的AFM图; (b) 沿图(a)中白色箭头的厚度数据图; (c) WSe2和ReSe2的拉曼光谱图
Fig. 2. Surface topography image of ReSe2/WSe2 heterojunction memtransistor: (a) AFM image of ReSe2/WSe2 heterojunction; (b) height profile of ReSe2/WSe2 along the thin white line in panel (a); (c) Raman spectra of the WSe2 and ReSe2 layer
图 3 在0 V栅压下, Au/ReSe2/WSe2/Au记忆晶体管的阻变特性 (a) 在不同源漏扫描电压下的Id-Vds特性曲线; (b) 连续225次循环周期下器件在Vds = 2.4 V时的高低阻值变化图; (c) 器件在室温下高低阻态保持特性图
Fig. 3. Resistance characteristics of the Au/ReSe2/WSe2/Au memtransistor at Vg = 0 V: (a) Id-Vds characteristic curves of Au/ReSe2/WSe2/Au memtransistor at different source drain sweeping voltages; (b) reversible resistance switching between the HRS and LRS over 225 cycles at Vds = 2.4 V; (c) the retention characteristics of the device at room temperature
图 4 ReSe2/WSe2记忆晶体管的阻变转换机制分析 (a) ReSe2和WSe2单独的能带图; (b) ReSe2/WSe2异质结的平衡能带图; (c) 负偏置电压下的双对数Id-Vds曲线
Fig. 4. Resistance switching mechanism analysis of ReSe2/WSe2 memtransistor: (a) Energy band arrangement for ReSe2 and WSe2; (b) energy band diagram of ReSe2/WSe2 heterojunction; (c) logarithmic Id-Vds curves of the memtransistor in the negative bias region
图 5 在–1 V < Vg < 1 V范围中, 不同栅压下ReSe2/WSe2记忆晶体管的阻变特性 (a) 负栅压Vg = –0.1— –1 V时的Id-Vds特性曲线; (b) 正栅压Vg = 0.1—1 V时的Id-Vds特性曲线(0 V作为参考)
Fig. 5. Resistance characteristics of ReSe2/WSe2 memtransistors at different gate voltages in the range of –1 V < Vg < 1 V: (a) Id-Vds characteristic curves at negative gate voltage Vg = –0.1−–1 V; (b) Id-Vds characteristic curves at positive gate voltage Vg = 0.1−1 V (the black line with Vg = 0 V is as a reference)
图 6 高栅压(|Vg| > 10 V)时, 不同栅压下Au/ReSe2/WSe2/Au器件的阻变特性 (a) 负栅压Vg = –10—–25 V时的Id-Vds特性曲线(其中0 V曲线作为参考); (b) 正栅压Vg = 10—25 V时的Id-Vds特性曲线
Fig. 6. Resistance characteristics of Au/ReSe2/WSe2/Au device at higher gate voltages (|Vg| > 10 V): (a) Id-Vds characteristic curves at negative gate voltages Vg = –10−–25 V (the black line with Vg = 0 V is as a reference) ; (b) Id-Vds characteristic curves at positive gate voltages Vg = 10−25 V
图 10 500 nm波长光照和电场同时调控下器件的阻变特性 (a) 负栅压Vg = –5—25 V时的Id-Vds曲线; (b) 正栅压Vg = 5—25 V时的Id-Vds曲线
Fig. 10. Resistance characteristics of electric and light dual-gate tunable memtransistor with illumination wavelength of 500 nm: (a) Id-Vds curves at negative gate voltages Vg = –5–25 V; (b) Id-Vds curves at positive gate voltages Vg = 5–25 V
图 11 光场和电场的双栅协控下, Au/ReSe2/WSe2/Au记忆晶体管特性 (a) 器件的高低阻态随栅压、波长的变化; (b) 开关比随栅压、波长的变化
Fig. 11. Electric and light dual-gate tunable Au/ReSe2/WSe2/Au memtransistor: (a) The high and low resistance states of the devices under different gate voltages and different incident wavelengths; (b) on/off ratio of the devices under different gate voltages and different incident wavelengths.
表 1 不同正栅压下器件的详细参数
Table 1. Detailed parameters of the device under different positive gate voltages
栅压 Vg/V 0 1 10 20 25 HRS阻
值/Ω6.31 ×
10114.36 ×
10111.20 ×
10108.75 ×
1085.26 ×
108LRS阻
值/Ω2.37 ×
1064.31 ×
1065.59 ×
1069.66 ×
1061.12 ×
107开关比 2.66 ×
1051.01 ×
1052.14 ×
1039.06 ×
1014.70 ×
101 -
[1] Chua L 1971 IEEE Trans. Circuit Theory 5 507Google Scholar
[2] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar
[3] Cheng S L, Fan Z, Rao J J, Hong L Q, Huang Q C, Tao R Q, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Yuan G L, Gao X S, Liu J M 2020 Iscience 23 101874Google Scholar
[4] Cui B Y, Fan Z, Li W J, Chen Y H, Dong S, Tan Z W, Cheng S L, Tian B B, Tao R Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2022 Nat. Commun. 13 1707Google Scholar
[5] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar
[6] Xu X W, Ding Y K, Hu S X B, Niemier M, Cong J, Hu Y, Shi Y Y 2018 Nat. Electron. 1 216Google Scholar
[7] Zeng M Q, Xiao Y, Liu J X, Yang K N, Fu L 2018 Chem. Rev. 118 6236Google Scholar
[8] Nguyen D A, Oh H M, Duong N T, Bang S, Yoon S J, Jeong M S 2018 ACS Appl. Mater. Interfaces 10 10322Google Scholar
[9] Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J H 2016 Nat. Commun. 7 13413Google Scholar
[10] Yoshida M, Suzuki R, Zhang Y, Nakano M, Iwasa Y 2015 Sci. Adv. 1 e1500606Google Scholar
[11] Vu Q A, Kim H, Nguyen V L, Won U Y, Adhikari S, Kim K, Lee Y H, Yu W J 2017 Adv. Mater. 29 1703363Google Scholar
[12] Xu R J, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J, Ham D 2019 Nano Lett. 19 2411Google Scholar
[13] Park M, Park S, Yoo K H 2016 ACS Appl. Mater. Interfaces 8 14046Google Scholar
[14] John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C, Fu Q D, Basu A, Liu Z, Mathews N 2018 Adv. Mater. 30 1800220Google Scholar
[15] Sangwan V K, Lee H S, Bergeron H, Beck M E, Chen K S, Hersam M C, Balla I 2018 Nature 554 500Google Scholar
[16] Zhong Y N, Gao X, Xu J L, Siringhaus H, Wang S D 2020 Adv. Electron. Mater. 6 1900955Google Scholar
[17] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302Google Scholar
Deng W, Wang L S, Liu J N, Yu X L, Chen F X 2021 Acta Phys. Sin. 70 217302Google Scholar
[18] Zhang W G, Gao H, Deng C S, Lü T, Hu S H, Hao W, Xue S Y, Tao Y F, Deng L M, Xiong W 2021 Nanoscale 13 11497Google Scholar
[19] Kim M, Ge R J, Wu X H, Lan X, Tice J, Lee J C, Akinwande D 2018 Nat. Commun. 9 2524Google Scholar
[20] Rehman S, Kim H, Khan M F, Hur J H, Eom J, Kim D K 2021 J. Alloys Compd. 855 157310Google Scholar
[21] 殷俊 2019 硕士学位论文 (北京: 清华大学)
Yin J 2019 M. S. Thesis (Beijing: Tsing University) (in Chinese)
[22] Tian X, Liu Y 2021 J. Semicond. 42 032001Google Scholar
[23] Zhou X, Hu X Z, Zhou S S, Song H Y, Zhang Q, Pi L J, Li L, Li H Q, Lü J T, Zhai T Y 2018 Adv. Mater. 30 1703286Google Scholar
[24] Ali M H, Kang D H, Park J H 2017 Org. Electron. 53 14
[25] Li D, Wu B, Zhu X J, Wang J T, Ryu B, Lu W D, Liang X G 2018 ACS Nano 12 9240Google Scholar
[26] Wang L, Liao W G, Wong S L, Yu Z G, Li S F, Lim Y F, Feng X W, Tan W C, Huang X, Chen L, Liu L, Chen J S, Gong X, Zhu C X, Liu X K, Zhang Y W, Chi D Z, Ang K W 2019 Adv. Funct. Mater. 29 1901106Google Scholar
[27] Wang C, Yang S, Xiong W Q, Xia C X, Cai H, Chen B, Wang X T, Zhang X Z, Wei Z M, Tongay S, Li J B, Liu Q 2016 Phys. Chem. Chem. Phys. 18 27750Google Scholar
[28] Wang X T, Huang L, Peng Y T, Huo N J, Wu K D, Xia C X, Wei Z M, Tongay S, Li J B 2016 Nano Res. 9 507Google Scholar
[29] Ahn J, Ko K, Kyhm J H, Ra H S, Bae H, Hong S, Kim D Y, Jang J, Kim T W, Choi S, Kang J H, Kwon N, Park S, Ju B K, Poon T C, Park M C, Im S, Hwang D K 2021 ACS Nano 15 17917Google Scholar
[30] Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732Google Scholar
[31] Jang M H, Agarwal R, Nukala P, Choi D, Johson A T C, Chen I W, Agarwal R 2016 Nano Lett. 16 2139Google Scholar
[32] 田学伟, 王永生, 张璐, 刘安琪, 何大伟 2018 中国科技信息 13 98Google Scholar
Tian X W, Wang Y S, Zhang L, Liu A Q, He D W 2018 Chin. Sci. Technol. Inf. 13 98Google Scholar
[33] Yin S Q, Song C, Sun Y M, Qiao L L, Wang B L, Sun Y F, Liu K, Pan F, Zhang X Z 2019 ACS Appl. Mater. Interfaces 11 43344Google Scholar
[34] 张璐 2016 硕士学位论文 (北京: 北京交通大学)
Zhang L 2016 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)
[35] 夏风梁, 石凯熙, 赵东旭, 王云鹏, 范翊, 李金华 2021 发光学报 42 257Google Scholar
Xia F L, Shi K X, Zhao D X, Wang Y P, Fan Y, Li J H 2021 Chin. J. Lumin. 42 257Google Scholar
计量
- 文章访问数: 4213
- PDF下载量: 110
- 被引次数: 0