-
记忆晶体管是结合了忆阻器和场效应晶体管特点的多端口器件.二维过渡金属硫化物拥有独特的电子结构和性质,在电子器件、能源转化、存储器等领域都有广泛的应用.本文以二维金属硫化物作为基础,制备了ReSe2/WSe2双p型的范德华异质结记忆晶体管,探究其在电控、光控以及光电协控下的阻变特性变化.结果表明,栅压是调控记忆晶体管性能的重要手段,可有效调控开关比在101 ~ 105之间变化;不同波长光照或者光功率密度的变化可以实现记忆晶体管高低阻态和开关比的调控;而且,光电协控也可使器件开关比在102~ 105范围内变化,并分析了不同调控条件下器件阻态变化的原因.此外,在经历了225次循环和1.9×104s时间后,ReSe2/WSe2异质结构记忆晶体管仍能保持接近104的开关比,表明器件有良好的稳定性和耐久性,将是一种很有发展潜力的下一代非易失性存储器.
-
关键词:
- ReSe2/WSe2 /
- 记忆晶体管 /
- 栅控 /
- 光控
Memtransistor is a multiterminal device combining the concepts of memristor and field-effect transistor. Two-dimensional Transition Metal Sulfides(TDMS)have unique electronic structure and properties, and they are widely used in electronic devices, energy conversion, memory and other fields. In this paper, a two-dimensional ReSe2/WSe2 heterostructure memtransistor was prepared, then the resistive switching characteristics under the electrical modulation, optical modulation, and electric-optical dual gate control are discussed. The results show that the gate control is an effective modulation method, which can change the on/off ratio of the device from 101 ~ 105. Then, the multi-level resistance and on/off ratio of the memtransistor can be controlled by the change of light wavelength and the illumination power. Moreover, the switching ratio of the device can also be changed in the range of 102 ~ 105 by electric and light dual-gate control, and the reasons for the change of resistance states of the device under different modulation conditions are analyzed. Furthermore, after 225 cycles and 1.9×104 s, the ReSe2/WSe2 heterostructure memtransistor still maintains a switch ratio close to 104, indicating the good stability and durability of the device. It demonstrates that the ReSe2/WSe2 memtransistor will be one of potential candidates for the next generation nonvolatile memory applications.-
Keywords:
- ReSe2/WSe2 /
- Memtransistor /
- Gate control /
- Optical control
-
[1] Chua L, 1971 IEEE Trans. Circuit Theory 5 507
[2] Strukov D B, Snider G S, Stewart D R, Williams, R. S 2008 Nature 453 80
[3] Cheng S L, Fan Z, Rao J J, Hong L Q, Huang Q C, Tao R Q, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Yuan G L, Gao X S, Liu J-M 2020 Iscience 23 101874
[4] Cui B Y, Fan Z, Li W J, Chen Y H, Dong S, Tan Z W, Cheng S L, Tian B B, Tao R Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J-M 2022 Nat. commun. 13 1707
[5] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632
[6] Xu X W, Ding Y K, Hu S X B, Niemier M, Cong J, Hu Y, Shi Y Y 2018 Nat. Electron. 1 216
[7] Zeng M Q, Xiao Y, Liu J X, Yang K N, Fu L 2018 Chem. Rev. 118 6236
[8] Nguyen D A, Oh H M, Duong N T, Bang S, Yoon S J, Jeong M S 2018 ACS Appl. Mater. Inter. 10 10322
[9] Shim J, Oh S, Kang D-H, Jo S-H, Ali M H, Choi W-Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J-H 2016 Nat. Commun. 7 13413
[10] Yoshida M, Suzuki R, Zhang Y, Nakano M, Iwasa Y 2015 Sci. Adv. 1 e1500606
[11] Vu Q A, Kim H, Nguyen V L, Won U Y, Adhikari S, Kim K, Lee Y H, Yu W J 2017 Adv. Mater. 29 1703363
[12] Xu R J, Jang H, Lee M-H, Amanov D, Cho Y, Kim H, Park S, Shin H-J, Ham D 2019 Nano Lett. 19 2411
[13] Park M, Park S, Yoo K-H 2016 ACS Appl. Mater. Inter. 8 14046
[14] John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C, Fu Q D, Basu A, Liu Z, Mathews N 2018 Adv. Mater. 30 1800220
[15] Sangwan V K, Lee H-S, Bergeron H, Beck M E, Chen K-S, Hersam M C, Balla I 2018 Nature 554 500
[16] Zhong Y-N, Gao X, Xu J-L, Siringhaus H, Wang S-D 2020 Adv. Electron. Mater. 6 1900955
[17] Zhang W G, Gao H, Deng C S, Lv T, Hu S H, Hao W, Xue S Y, Tao Y F, Deng L M, Xiong W 2021 Nanoscale 13 11497
[18] Kim M, Ge R J, Wu X H, Lan X, Tice J, Lee J C, Akinwande D 2018 Nat. Commun. 9 2524
[19] Rehman S, Kim H, Khan M F, Hur J-H, Eom J, Kim D-K 2021 J. Alloy. Compd. 855 157310
[20] Tian X, Liu Y 2021 J. Semicond. 42 032001
[21] Zhou X, Hu X Z, Zhou S S, Song H Y, Zhang Q, Pi L J, Li L, Li H Q, Lv J T, Zhai T Y 2018 Adv. Mater. 30 1703286
[22] Ali M H, Kang D-H, Park J-H 2017 Org. Electron. 53 14
[23] Li D, Wu B, Zhu X J, Wang J T, Ryu B, Lu W D, Liang X G 2018 ACS Nano 12 9240
[24] Wang L, Liao W G, Wong S L, Yu Z G, Li S F, Lim Y-F, Feng X W, Tan W C, Huang X, Chen L, Liu L, Chen J S, Gong X, Zhu C X, Liu X K, Zhang Y-W, Chi D Z, Ang K-W 2019 Adv. Funct. Mater. 29 1901106
[25] Wang C, Yang S, Xiong W Q, Xia C X, Cai H, Chen B, Wang X T, Zhang X Z, Wei Z M, Tongay S, Li J B, Liu Q 2016 Phys. Chem. Chem. Phys. 18 27750
[26] Wang X T, Huang L, Peng Y T, Huo N J, Wu K D, Xia C X, Wei Z M, Tongay S, Li J B 2016 Nano Res. 9 507
[27] Ahn J, Ko K, Kyhm J-h, Ra H-S, Bae H, Hong S, Kim D-Y, Jang J, Kim T W, Choi S, Kang J-H, Kwon N, Park S, Ju B-K, Poon T-C, Park M-C, Im S, Hwang D K 2021 ACS Nano 15 17917
[28] Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732
[29] Jang M H, Agarwal R, Nukala P, Choi D, Johson A. T. C, Chen I-W, Agarwal R 2016 Nano Lett. 16 2139
[30] Yin S Q, Song C, Sun Y M, Qiao L L, Wang B L, Sun Y F, Liu K, Pan F, Zhang X Z 2019 ACS Appl. Mater. Inter. 11 43344
计量
- 文章访问数: 2301
- PDF下载量: 0
- 被引次数: 0