搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ReSe2/WSe2记忆晶体管的光电调控和阻变特性研究

余雪玲 陈凤翔 相韬 邓文 刘嘉宁 汪礼胜

引用本文:
Citation:

ReSe2/WSe2记忆晶体管的光电调控和阻变特性研究

余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜

Research on the photoelectric modulation and resistive switching characteristic of ReSe2/WSe2 memtransistor

Yu Xue-Ling, Chen Feng-Xiang, Xiang Tao, Deng Wen, Liu Jia-Ning, Wang Li-Sheng
PDF
导出引用
  • 记忆晶体管是结合了忆阻器和场效应晶体管特点的多端口器件.二维过渡金属硫化物拥有独特的电子结构和性质,在电子器件、能源转化、存储器等领域都有广泛的应用.本文以二维金属硫化物作为基础,制备了ReSe2/WSe2双p型的范德华异质结记忆晶体管,探究其在电控、光控以及光电协控下的阻变特性变化.结果表明,栅压是调控记忆晶体管性能的重要手段,可有效调控开关比在101 ~ 105之间变化;不同波长光照或者光功率密度的变化可以实现记忆晶体管高低阻态和开关比的调控;而且,光电协控也可使器件开关比在102~ 105范围内变化,并分析了不同调控条件下器件阻态变化的原因.此外,在经历了225次循环和1.9×104s时间后,ReSe2/WSe2异质结构记忆晶体管仍能保持接近104的开关比,表明器件有良好的稳定性和耐久性,将是一种很有发展潜力的下一代非易失性存储器.
    Memtransistor is a multiterminal device combining the concepts of memristor and field-effect transistor. Two-dimensional Transition Metal Sulfides(TDMS)have unique electronic structure and properties, and they are widely used in electronic devices, energy conversion, memory and other fields. In this paper, a two-dimensional ReSe2/WSe2 heterostructure memtransistor was prepared, then the resistive switching characteristics under the electrical modulation, optical modulation, and electric-optical dual gate control are discussed. The results show that the gate control is an effective modulation method, which can change the on/off ratio of the device from 101 ~ 105. Then, the multi-level resistance and on/off ratio of the memtransistor can be controlled by the change of light wavelength and the illumination power. Moreover, the switching ratio of the device can also be changed in the range of 102 ~ 105 by electric and light dual-gate control, and the reasons for the change of resistance states of the device under different modulation conditions are analyzed. Furthermore, after 225 cycles and 1.9×104 s, the ReSe2/WSe2 heterostructure memtransistor still maintains a switch ratio close to 104, indicating the good stability and durability of the device. It demonstrates that the ReSe2/WSe2 memtransistor will be one of potential candidates for the next generation nonvolatile memory applications.
  • [1]

    Chua L, 1971 IEEE Trans. Circuit Theory 5 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams, R. S 2008 Nature 453 80

    [3]

    Cheng S L, Fan Z, Rao J J, Hong L Q, Huang Q C, Tao R Q, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Yuan G L, Gao X S, Liu J-M 2020 Iscience 23 101874

    [4]

    Cui B Y, Fan Z, Li W J, Chen Y H, Dong S, Tan Z W, Cheng S L, Tian B B, Tao R Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J-M 2022 Nat. commun. 13 1707

    [5]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [6]

    Xu X W, Ding Y K, Hu S X B, Niemier M, Cong J, Hu Y, Shi Y Y 2018 Nat. Electron. 1 216

    [7]

    Zeng M Q, Xiao Y, Liu J X, Yang K N, Fu L 2018 Chem. Rev. 118 6236

    [8]

    Nguyen D A, Oh H M, Duong N T, Bang S, Yoon S J, Jeong M S 2018 ACS Appl. Mater. Inter. 10 10322

    [9]

    Shim J, Oh S, Kang D-H, Jo S-H, Ali M H, Choi W-Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J-H 2016 Nat. Commun. 7 13413

    [10]

    Yoshida M, Suzuki R, Zhang Y, Nakano M, Iwasa Y 2015 Sci. Adv. 1 e1500606

    [11]

    Vu Q A, Kim H, Nguyen V L, Won U Y, Adhikari S, Kim K, Lee Y H, Yu W J 2017 Adv. Mater. 29 1703363

    [12]

    Xu R J, Jang H, Lee M-H, Amanov D, Cho Y, Kim H, Park S, Shin H-J, Ham D 2019 Nano Lett. 19 2411

    [13]

    Park M, Park S, Yoo K-H 2016 ACS Appl. Mater. Inter. 8 14046

    [14]

    John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C, Fu Q D, Basu A, Liu Z, Mathews N 2018 Adv. Mater. 30 1800220

    [15]

    Sangwan V K, Lee H-S, Bergeron H, Beck M E, Chen K-S, Hersam M C, Balla I 2018 Nature 554 500

    [16]

    Zhong Y-N, Gao X, Xu J-L, Siringhaus H, Wang S-D 2020 Adv. Electron. Mater. 6 1900955

    [17]

    Zhang W G, Gao H, Deng C S, Lv T, Hu S H, Hao W, Xue S Y, Tao Y F, Deng L M, Xiong W 2021 Nanoscale 13 11497

    [18]

    Kim M, Ge R J, Wu X H, Lan X, Tice J, Lee J C, Akinwande D 2018 Nat. Commun. 9 2524

    [19]

    Rehman S, Kim H, Khan M F, Hur J-H, Eom J, Kim D-K 2021 J. Alloy. Compd. 855 157310

    [20]

    Tian X, Liu Y 2021 J. Semicond. 42 032001

    [21]

    Zhou X, Hu X Z, Zhou S S, Song H Y, Zhang Q, Pi L J, Li L, Li H Q, Lv J T, Zhai T Y 2018 Adv. Mater. 30 1703286

    [22]

    Ali M H, Kang D-H, Park J-H 2017 Org. Electron. 53 14

    [23]

    Li D, Wu B, Zhu X J, Wang J T, Ryu B, Lu W D, Liang X G 2018 ACS Nano 12 9240

    [24]

    Wang L, Liao W G, Wong S L, Yu Z G, Li S F, Lim Y-F, Feng X W, Tan W C, Huang X, Chen L, Liu L, Chen J S, Gong X, Zhu C X, Liu X K, Zhang Y-W, Chi D Z, Ang K-W 2019 Adv. Funct. Mater. 29 1901106

    [25]

    Wang C, Yang S, Xiong W Q, Xia C X, Cai H, Chen B, Wang X T, Zhang X Z, Wei Z M, Tongay S, Li J B, Liu Q 2016 Phys. Chem. Chem. Phys. 18 27750

    [26]

    Wang X T, Huang L, Peng Y T, Huo N J, Wu K D, Xia C X, Wei Z M, Tongay S, Li J B 2016 Nano Res. 9 507

    [27]

    Ahn J, Ko K, Kyhm J-h, Ra H-S, Bae H, Hong S, Kim D-Y, Jang J, Kim T W, Choi S, Kang J-H, Kwon N, Park S, Ju B-K, Poon T-C, Park M-C, Im S, Hwang D K 2021 ACS Nano 15 17917

    [28]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732

    [29]

    Jang M H, Agarwal R, Nukala P, Choi D, Johson A. T. C, Chen I-W, Agarwal R 2016 Nano Lett. 16 2139

    [30]

    Yin S Q, Song C, Sun Y M, Qiao L L, Wang B L, Sun Y F, Liu K, Pan F, Zhang X Z 2019 ACS Appl. Mater. Inter. 11 43344

  • [1] 李岩, 陈鑫力, 王伟胜, 石智文, 竺立强. 蛋壳膜电解质栅控氧化物神经形态晶体管. 物理学报, doi: 10.7498/aps.72.20230411
    [2] 郑军, 马力, 李春雷, 袁瑞旸, 郭亚涛, 付旭日. 自旋偏压驱动的硅烯和锗烯光控晶体管. 物理学报, doi: 10.7498/aps.71.20221047
    [3] 余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜. ReSe2/WSe2记忆晶体管的光电调控和阻变特性. 物理学报, doi: 10.7498/aps.71.20221154
    [4] 缑石龙, 马武英, 姚志斌, 何宝平, 盛江坤, 薛院院, 潘琛. 基于栅控横向PNP双极晶体管的氢氛围中辐照损伤机制. 物理学报, doi: 10.7498/aps.70.20210351
    [5] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究. 物理学报, doi: 10.7498/aps.70.20210750
    [6] 柴金华, 陈飞. 准平行光干涉的滤波型多抖动相控方法研究. 物理学报, doi: 10.7498/aps.67.20171562
    [7] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器. 物理学报, doi: 10.7498/aps.66.054210
    [8] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武. 硅基全光宽带太赫兹幅度调制器的研究. 物理学报, doi: 10.7498/aps.64.028401
    [9] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯. 栅控横向PNP双极晶体管基极电流峰值展宽效应及电荷分离研究. 物理学报, doi: 10.7498/aps.63.116101
    [10] 朱德明, 门传玲, 曹敏, 吴国栋. 基于P掺杂SiO2为栅介质的超低压侧栅薄膜晶体管. 物理学报, doi: 10.7498/aps.62.117305
    [11] 周建伟, 梁静秋, 梁中翥, 田超, 秦余欣, 王维彪. 光控液晶光子晶体微腔全光开关. 物理学报, doi: 10.7498/aps.62.134208
    [12] 李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声. 栅控电子枪中轮辐栅网截止放大系数的研究. 物理学报, doi: 10.7498/aps.61.078502
    [13] 席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪. 栅控横向PNP双极晶体管辐照感生电荷的定量分离. 物理学报, doi: 10.7498/aps.61.236103
    [14] 席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静. 中带电压法分离栅控横向pnp双极晶体管辐照感生缺. 物理学报, doi: 10.7498/aps.61.076101
    [15] 郭展, 范飞, 白晋军, 牛超, 常胜江. 基于磁光子晶体的磁控可调谐太赫兹滤波器和开关. 物理学报, doi: 10.7498/aps.60.074218
    [16] 王拥军, 吴重庆, 王智, 王亚平, 忻向军. 半导体光放大器引起的光控器件中的信号损伤分析. 物理学报, doi: 10.7498/aps.59.4042
    [17] 毕海星, 周云松, 赵丽明, 王福合. 光子晶体中的磁控光子开关线路. 物理学报, doi: 10.7498/aps.57.5718
    [18] 李亚捷, 吴重庆, 王拥军, 唐清善. 基于半导体光放大器的光控器件中控制光的性能分析. 物理学报, doi: 10.7498/aps.56.952
    [19] 孟志国, 吴春亚, 李 娟, 熊绍珍, 郭海成, 王 文. 金属诱导单一方向横向晶化薄膜晶体管以及栅控型轻掺杂漏极结构的研究. 物理学报, doi: 10.7498/aps.54.3363
    [20] 丁瑞钦, 王浩, 于英敏, 王宁娟, 佘卫龙, 李润华, 丘志仁, 罗莉, 蔡志岗, W Y Cheung, S P Wong. 射频磁控共溅射GaAs/SiO2纳米颗粒镶嵌薄膜的光学性质. 物理学报, doi: 10.7498/aps.51.882
计量
  • 文章访问数:  2161
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2022-08-01

/

返回文章
返回