搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一步退火工艺构建WSe2互补晶体管

崔馨雨 单俊杰 孙肖瑜 潘晨 孙佳萌 于文韬 梁世军 缪峰

引用本文:
Citation:

一步退火工艺构建WSe2互补晶体管

崔馨雨, 单俊杰, 孙肖瑜, 潘晨, 孙佳萌, 于文韬, 梁世军, 缪峰
cstr: 32037.14.aps.74.20250648

One-step-annealing-process constructed WSe2 complementary transistors

CUI Xinyu, SHAN Junjie, SUN Xiaoyu, PAN Chen, SUN Jiameng, YU Wentao, LIANG Shijun, MIAO Feng
cstr: 32037.14.aps.74.20250648
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 二维半导体材料凭借其独特的物理特性与优异的电学性能, 在后摩尔时代集成电路发展中展现出巨大潜力. 开发与二维材料兼容的极性调控方法, 已成为基于二维半导体构建互补逻辑电路、实现低功耗且高稳定性信息处理功能的关键, 有望为持续提升集成电路性能提供新路径. 本研究报道了一种基于一步退火工艺的二维半导体极性调控策略, Pd电极接触的WSe2晶体管的导电特性经退火由n型主导转变为p型主导; 而Cr电极接触的器件则始终保持n型主导的导电特性. 在此基础上, 通过在同一WSe2上选择性制备不同金属材料的源漏电极并结合一步退火工艺, 实现了互补晶体管的单片集成, 进而通过器件互联实现了反相器功能. 在2.5 V的电源电压(Vdd)下, 反相器增益达23, 总噪声容限达2.3 V(0.92 Vdd). 该研究为二维半导体的极性调控提供了全新的技术路径.
    Two-dimensional (2D) semiconductor materials exhibit tremendous potential for post-Moore integrated circuits due to their unique physical properties and superior electrical characteristics. However, critical challenges in polarity modulation and complementary integration have significantly hindered the practical applications of 2D materials. The development of compatible polarity-modulation techniques has emerged as a critical step in achieving device functional integration for constructing 2D materials-based complementary circuits. This study innovatively proposes a one-step-annealing-driven polarity-modulation strategy for 2D semiconductors. It is demonstrated in this study that the conduction behavior of Pd-contacted WSe2 transistors transitions from n-type to p-type dominance after annealing, while Cr-contacted devices maintain n-type dominance. Based on this polarity-modulation strategy, by selectively fabricating source and drain electrodes with different metal materials (Pd and Cr) on the same WSe2, combined with a one-step annealing process, the monolithic integration of complementary transistors is achieved, thereby realizing inverter function through device interconnection. The fabricated inverters exhibit a high voltage gain of 23 and a total noise margin of 2.3 V(0.92 Vdd) at an applied Vdd of 2.5 V. This work not only establishes a novel technical pathway for polarity modulation in 2D materials but also provides crucial technological support for developing 2D semiconductor-based complementary logic circuits.
      通信作者: 单俊杰, junjieshan@njnu.edu.cn ; 潘晨, chenpan@njust.edu.cn ; 梁世军, sjliang@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1402500, 2023YFF1203600)、国家自然科学基金(批准号: 62122036, 62034004, 61921005, 62204112)和江苏省自然科学基金(批准号: BK20220774)资助的课题.
      Corresponding author: SHAN Junjie, junjieshan@njnu.edu.cn ; PAN Chen, chenpan@njust.edu.cn ; LIANG Shijun, sjliang@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1402500, 2023YFF1203600), the National Natural Science Foundation of China (Grant Nos. 62122036, 62034004, 61921005, 62204112), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20220774).
    [1]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [2]

    Liu Y, Duan X D, Huang Y, Duan X F 2018 Chem. Soc. Rev. 47 6388Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [4]

    Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y, Ren T L 2022 Nature 603 259Google Scholar

    [5]

    Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H L 2019 Nature 573 507Google Scholar

    [6]

    Das S, Sebastian A, Pop E, McClellan C J, Franklin A D, Grasser T, Knobloch T, Illarionov Y, Penumatcha A V, Appenzeller J, Chen Z H, Zhu W J, Asselberghs I, Li L J, Avci U E, Bhat N, Anthopoulos T D, Singh R 2021 Nat. Electron. 4 786Google Scholar

    [7]

    Jayachandran D, Pendurthi R, Sadaf M U K, Sakib N U, Pannone A, Chen C, Han Y, Trainor N, Kumari S, Mc Knight T V, Redwing J M, Yang Y, Das S 2024 Nature 625 276Google Scholar

    [8]

    Sun X, Zhu C, Yi J, Xiang L, Ma C, Liu H, Zheng B, Liu Y, You W, Zhang W, Liang D, Shuai Q, Zhu X, Duan H, Liao L, Liu Y, Li D, Pan A 2022 Nat. Electron. 5 752Google Scholar

    [9]

    Xie M S, Jia Y Y, Nie C, Liu Z H, Tang A, Fan S Q, Liang X Y, Jiang L, He Z Z, Yang R 2023 Nat. Commun. 14 5952Google Scholar

    [10]

    Yu J, Wang H, Zhuge F, Chen Z, Hu M, Xu X, He Y, Ma Y, Miao X, Zhai T 2023 Nat. Commun. 14 5662Google Scholar

    [11]

    Zhang Q, Wang X F, Shen S H, Lu Q, Liu X, Li H, Zheng J, Yu C P, Zhong X, Gu L, Ren T L, Jiao L 2019 Nat. Electron. 2 164Google Scholar

    [12]

    Zhu K, Wen C, Aljarb A A, Xue F, Xu X, Tung V, Zhang X, Alshareef H N, Lanza M 2021 Nat. Electron. 4 775Google Scholar

    [13]

    Haynes T E, Eaglesham D J, Stolk P A, Gossmann H J, Jacobson D C, Poate J M 1996 Appl. Phys. Lett. 69 1376Google Scholar

    [14]

    Pandey K C, Erbil A, Cargill I G, Boehme R F, Vanderbilt D 1988 Phys. Rev. Lett. 61 1282Google Scholar

    [15]

    Cai J, Sun Z, Wu P, Tripathi R, Lan H Y, Kong J, Chen Z H, Appenzeller J 2023 Nano Lett. 23 10939Google Scholar

    [16]

    Kim J K, Cho K, Jang J, Baek K Y, Kim J, Seo J, Song M, Shin J, Kim J, Parkin S S P, Lee J H, Kang K, Lee T 2021 Adv. Mater. 33 2101598Google Scholar

    [17]

    Luo W, Zhu M J, Peng G, Zheng X M, Miao F, Bai S X, Zhang X A, Qin S Q 2018 Adv. Funct. Mater. 28 1704539Google Scholar

    [18]

    Qi D Y, Han C, Rong X M, Zhang X W, Chhowalla M, Wee A T S, Zhang W J 2019 ACS Nano 13 9464Google Scholar

    [19]

    Tosun M, Chuang S, Fang H, Sachid A B, Hettick M, Lin Y J, Zeng Y P, Javey A 2014 ACS Nano 8 4948Google Scholar

    [20]

    Yu L L, Zubair A, Santos E J G, Zhang X, Lin Y X, Zhang Y H, Palacios T 2015 Nano Lett. 15 4928Google Scholar

    [21]

    Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar

    [22]

    Wang Y, Kim J C, Li Y, Ma K Y, Hong S, Kim M, Shin H S, Jeong H Y, Chhowalla M 2022 Nature 610 61Google Scholar

    [23]

    Pan C, Wang C-Y, Liang S-J, Wang Y, Cao T, Wang P, Wang C, Wang S, Cheng B, Gao A, Liu E, Watanabe K, Taniguchi T, Miao F 2020 Nat. Electron. 3 383Google Scholar

    [24]

    Pang C S, Thakuria N, Gupta S K, Chen Z 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, December 1–5, 2018 pp22.2.1–22.2.4

    [25]

    Resta G V, Balaji Y, Lin D, Radu I P, Catthoor F, Gaillardon P E, De Micheli G 2018 ACS Nano 12 7039Google Scholar

    [26]

    Guo Y, Li J, Zhan X, Wang C, Li M, Zhang B, Wang Z, Liu Y, Yang K, Wang H, Li W, Gu P, Luo Z, Liu Y, Liu P, Chen B, Watanabe K, Taniguchi T, Chen X-Q, Qin C, Chen J, Sun D, Zhang J, Wang R, Liu J, Ye Y, Li X, Hou Y, Zhou W, Wang H, Han Z 2024 Nature 630 346Google Scholar

    [27]

    Kong L G, Zhang X D, Tao Q Y, Zhang M L, Dang W Q, Li Z W, Feng L P, Liao L, Duan X F, Liu Y 2020 Nat. Commun. 11 1866Google Scholar

    [28]

    Li R, Lu F, Deng J, Fu X, Wang W, Tian H 2024 J. Semicond. 45 012701Google Scholar

    [29]

    Jobayr M R, Salman E M T 2023 J. Semicond. 44 032001Google Scholar

    [30]

    Chou S A, Chang C, Wu B H, Chuu C P, Kuo P C, Pan L H, Huang K C, Lai M H, Chen Y F, Lee C L, Chen H Y, Shiue J, Chang Y M, Li M Y, Chiu Y P, Chen C W, Ho P H 2025 Nat. Commun. 16 2777Google Scholar

    [31]

    Herrmann P, Klimmer S, Lettau T, Weickhardt T, Papavasileiou A, Mosina K, Sofer Z, Paradisanos I, Kartashov D, Wilhelm J, Soavi G 2025 Nat. Photonics 19 300Google Scholar

    [32]

    Oberoi A, Han Y, Stepanoff S P, Pannone A, Sun Y, Lin Y C, Chen C, Shallenberger J R, Zhou D, Terrones M, Redwing J M, Robinson J A, Wolfe D E, Yang Y, Das S 2023 ACS Nano 17 19709Google Scholar

    [33]

    Liu X, Shan J, Cao T, Zhu L, Ma J, Wang G, Shi Z, Yang Q, Ma M, Liu Z, Yan S, Wang L, Dai Y, Xiong J, Chen F, Wang B, Pan C, Wang Z, Cheng B, He Y, Luo X, Lin J, Liang S J, Miao F 2024 Nat. Mater. 23 1363Google Scholar

    [34]

    拉贝艾简M著 (周润德译) 2004 数字集成电路—电路、系统与设计 (北京: 电子工业出版社) 第136—140页 {译著}

    Rabaey J M (translated by Zhou R D) 2004 Digital Integrated Circuits A Design Perspective (Beijing: Publishing House of Electrnics Industry) pp136–140

    [35]

    Park Y J, Katiyar A K, Anh Tuan H, Ahn J H 2019 Small 15 1901772Google Scholar

  • 图 1  WSe2 FETs的极性调控 (a) 以Pd和Cr作为源漏接触电极的WSe2器件在退火前后的光学照片对比, 其中将退火前后Pd-WSe2与Cr-WSe2器件电极近邻沟道区域分别标记为区域Ⅰ, Ⅱ, Ⅲ和Ⅳ, 比例尺为1 μm; (b) 图(a)中对应区域“Ⅰ—Ⅳ”的拉曼光谱表征结果; 以Pd(c)和Cr(d)为源漏接触电极的背栅结构WSe2 FETs退火前后的转移特性曲线, 施加Vds为3 V, 器件结构示意图如插图所示

    Fig. 1.  Polarity modulation of WSe2 FETs: (a) Comparative optical micrographs of Pd-contact and Cr-contact WSe2 devices before and after annealing. The electrode-proximal channel zones in Pd-WSe2 and Cr-WSe2 devices are labeled as regions Ⅰ, Ⅱ, Ⅲ and Ⅳ before and after annealing states, respectively, the scale bar is 1 μm. (b) Raman spectrum characterization results of the corresponding regions “Ⅰ–Ⅳ” marked in Figure (a). Transfer characteristic curves of back-gated WSe2 FETs with Pd contact (c) and Cr contact (d) before and after annealing, measured at Vds of 3 V, and the insets illustrate the schematics of device structures.

    图 2  基于WSe2的互补FETs的单片集成与电学特性 (a) 在单一WSe2材料上集成互补FETs的器件结构示意图, 经退火操作后, Pd-WSe2 FET表现为p-FET, Cr-WSe2 FET表现为n-FET; (b) p-FET和n-FET的转移特性曲线, 其中红色曲线代表p-FET, 蓝色曲线代表n-FET, 施加的Vds分别为–1 V和1 V; p-FET(c)和n-FET(d)的输出特性曲线, Vg变化范围为0—2.5 V, 变化步长为0.5 V, 施加的Vs分别为3和0 V

    Fig. 2.  Monolithic integration and electrical characteristics of WSe2-based complementary FETs: (a) Schematic of the integrated complementary FETs on a single WSe2 flake, the annealed Pd-WSe2 FET serves as p-FET and the Cr-WSe2 FET functions as n-FET; (b) transfer characteristic curves of the p-FET (red curve) and n-FET (blue curve), the applied Vds are –1 V and 1 V, respectively; output characteristic curves of the p-FET (c) and n-FET (d), the Vg swept from 0 to 2.5 V with step increments of 0.5 V, and the applied Vs are 3 and 0 V, respectively.

    图 3  基于WSe2 FETs构建的互补逻辑反相器及其电学性能 (a) p-FET和n-FET串联组成的互补逻辑反相器的电路图; (b) 反相器的电压传输特性曲线, 所施Vdd范围为1—2.5 V, 变化步长为0.5 V; (c) 基于反相器电压传输特性曲线提取的电压增益; (d) 当Vdd为2.5 V时, WSe2反相器的蝶形电压传输特性曲线

    Fig. 3.  Construction and electrical characteristics of complementary logic inverter based on WSe2 FETs: (a) Circuit diagram of the complementary logic inverter composed of p-FET and n-FET connected in series; (b) voltage transfer characteristic curves of inverter, the applied Vdd range from 1 to 2.5 V with step increments of 0.5 V; (c) voltage gain extracted from the voltage transfer characteristic curves of the inverter; (d) butterfly voltage transfer characteristic curves of WSe2 inverter at applied Vdd of 2.5 V.

  • [1]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [2]

    Liu Y, Duan X D, Huang Y, Duan X F 2018 Chem. Soc. Rev. 47 6388Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [4]

    Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y, Ren T L 2022 Nature 603 259Google Scholar

    [5]

    Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H L 2019 Nature 573 507Google Scholar

    [6]

    Das S, Sebastian A, Pop E, McClellan C J, Franklin A D, Grasser T, Knobloch T, Illarionov Y, Penumatcha A V, Appenzeller J, Chen Z H, Zhu W J, Asselberghs I, Li L J, Avci U E, Bhat N, Anthopoulos T D, Singh R 2021 Nat. Electron. 4 786Google Scholar

    [7]

    Jayachandran D, Pendurthi R, Sadaf M U K, Sakib N U, Pannone A, Chen C, Han Y, Trainor N, Kumari S, Mc Knight T V, Redwing J M, Yang Y, Das S 2024 Nature 625 276Google Scholar

    [8]

    Sun X, Zhu C, Yi J, Xiang L, Ma C, Liu H, Zheng B, Liu Y, You W, Zhang W, Liang D, Shuai Q, Zhu X, Duan H, Liao L, Liu Y, Li D, Pan A 2022 Nat. Electron. 5 752Google Scholar

    [9]

    Xie M S, Jia Y Y, Nie C, Liu Z H, Tang A, Fan S Q, Liang X Y, Jiang L, He Z Z, Yang R 2023 Nat. Commun. 14 5952Google Scholar

    [10]

    Yu J, Wang H, Zhuge F, Chen Z, Hu M, Xu X, He Y, Ma Y, Miao X, Zhai T 2023 Nat. Commun. 14 5662Google Scholar

    [11]

    Zhang Q, Wang X F, Shen S H, Lu Q, Liu X, Li H, Zheng J, Yu C P, Zhong X, Gu L, Ren T L, Jiao L 2019 Nat. Electron. 2 164Google Scholar

    [12]

    Zhu K, Wen C, Aljarb A A, Xue F, Xu X, Tung V, Zhang X, Alshareef H N, Lanza M 2021 Nat. Electron. 4 775Google Scholar

    [13]

    Haynes T E, Eaglesham D J, Stolk P A, Gossmann H J, Jacobson D C, Poate J M 1996 Appl. Phys. Lett. 69 1376Google Scholar

    [14]

    Pandey K C, Erbil A, Cargill I G, Boehme R F, Vanderbilt D 1988 Phys. Rev. Lett. 61 1282Google Scholar

    [15]

    Cai J, Sun Z, Wu P, Tripathi R, Lan H Y, Kong J, Chen Z H, Appenzeller J 2023 Nano Lett. 23 10939Google Scholar

    [16]

    Kim J K, Cho K, Jang J, Baek K Y, Kim J, Seo J, Song M, Shin J, Kim J, Parkin S S P, Lee J H, Kang K, Lee T 2021 Adv. Mater. 33 2101598Google Scholar

    [17]

    Luo W, Zhu M J, Peng G, Zheng X M, Miao F, Bai S X, Zhang X A, Qin S Q 2018 Adv. Funct. Mater. 28 1704539Google Scholar

    [18]

    Qi D Y, Han C, Rong X M, Zhang X W, Chhowalla M, Wee A T S, Zhang W J 2019 ACS Nano 13 9464Google Scholar

    [19]

    Tosun M, Chuang S, Fang H, Sachid A B, Hettick M, Lin Y J, Zeng Y P, Javey A 2014 ACS Nano 8 4948Google Scholar

    [20]

    Yu L L, Zubair A, Santos E J G, Zhang X, Lin Y X, Zhang Y H, Palacios T 2015 Nano Lett. 15 4928Google Scholar

    [21]

    Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar

    [22]

    Wang Y, Kim J C, Li Y, Ma K Y, Hong S, Kim M, Shin H S, Jeong H Y, Chhowalla M 2022 Nature 610 61Google Scholar

    [23]

    Pan C, Wang C-Y, Liang S-J, Wang Y, Cao T, Wang P, Wang C, Wang S, Cheng B, Gao A, Liu E, Watanabe K, Taniguchi T, Miao F 2020 Nat. Electron. 3 383Google Scholar

    [24]

    Pang C S, Thakuria N, Gupta S K, Chen Z 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, December 1–5, 2018 pp22.2.1–22.2.4

    [25]

    Resta G V, Balaji Y, Lin D, Radu I P, Catthoor F, Gaillardon P E, De Micheli G 2018 ACS Nano 12 7039Google Scholar

    [26]

    Guo Y, Li J, Zhan X, Wang C, Li M, Zhang B, Wang Z, Liu Y, Yang K, Wang H, Li W, Gu P, Luo Z, Liu Y, Liu P, Chen B, Watanabe K, Taniguchi T, Chen X-Q, Qin C, Chen J, Sun D, Zhang J, Wang R, Liu J, Ye Y, Li X, Hou Y, Zhou W, Wang H, Han Z 2024 Nature 630 346Google Scholar

    [27]

    Kong L G, Zhang X D, Tao Q Y, Zhang M L, Dang W Q, Li Z W, Feng L P, Liao L, Duan X F, Liu Y 2020 Nat. Commun. 11 1866Google Scholar

    [28]

    Li R, Lu F, Deng J, Fu X, Wang W, Tian H 2024 J. Semicond. 45 012701Google Scholar

    [29]

    Jobayr M R, Salman E M T 2023 J. Semicond. 44 032001Google Scholar

    [30]

    Chou S A, Chang C, Wu B H, Chuu C P, Kuo P C, Pan L H, Huang K C, Lai M H, Chen Y F, Lee C L, Chen H Y, Shiue J, Chang Y M, Li M Y, Chiu Y P, Chen C W, Ho P H 2025 Nat. Commun. 16 2777Google Scholar

    [31]

    Herrmann P, Klimmer S, Lettau T, Weickhardt T, Papavasileiou A, Mosina K, Sofer Z, Paradisanos I, Kartashov D, Wilhelm J, Soavi G 2025 Nat. Photonics 19 300Google Scholar

    [32]

    Oberoi A, Han Y, Stepanoff S P, Pannone A, Sun Y, Lin Y C, Chen C, Shallenberger J R, Zhou D, Terrones M, Redwing J M, Robinson J A, Wolfe D E, Yang Y, Das S 2023 ACS Nano 17 19709Google Scholar

    [33]

    Liu X, Shan J, Cao T, Zhu L, Ma J, Wang G, Shi Z, Yang Q, Ma M, Liu Z, Yan S, Wang L, Dai Y, Xiong J, Chen F, Wang B, Pan C, Wang Z, Cheng B, He Y, Luo X, Lin J, Liang S J, Miao F 2024 Nat. Mater. 23 1363Google Scholar

    [34]

    拉贝艾简M著 (周润德译) 2004 数字集成电路—电路、系统与设计 (北京: 电子工业出版社) 第136—140页 {译著}

    Rabaey J M (translated by Zhou R D) 2004 Digital Integrated Circuits A Design Perspective (Beijing: Publishing House of Electrnics Industry) pp136–140

    [35]

    Park Y J, Katiyar A K, Anh Tuan H, Ahn J H 2019 Small 15 1901772Google Scholar

  • [1] 陈建举, 彭淑平, 邓淑玲, 周文, 范志强, 张小姣. 非对称电极对二维SiC场效应晶体管工作性能调控与低功耗优化. 物理学报, 2025, 74(19): . doi: 10.7498/aps.74.20250849
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜. ReSe2/WSe2记忆晶体管的光电调控和阻变特性研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221154
    [4] 余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜. ReSe2/WSe2记忆晶体管的光电调控和阻变特性. 物理学报, 2022, 71(21): 217302. doi: 10.7498/aps.71.20221154
    [5] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控. 物理学报, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [6] 宋明旭, 王怀鹏, 孙翊淋, 蔡理, 杨晓阔, 谢丹. AuCl3掺杂对碳纳米管晶体管的电学性能调控及特性分析. 物理学报, 2021, 70(23): 238801. doi: 10.7498/aps.70.20211026
    [7] 郭宁, 周舟, 倪牮, 蔡宏琨, 张建军, 孙艳艳, 李娟. 基于二维有机无机杂化钙钛矿的薄膜晶体管. 物理学报, 2020, 69(19): 198102. doi: 10.7498/aps.69.20200701
    [8] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [9] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究. 物理学报, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [10] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究. 物理学报, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [11] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [12] 马武英, 姚志斌, 何宝平, 王祖军, 刘敏波, 刘静, 盛江坤, 董观涛, 薛院院. 65 nm互补金属氧化物半导体场效应和晶体管总剂量效应及损伤机制. 物理学报, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [13] 孙悦, 曲斌, 全保刚. 碳纳米管/二硒化钼有机玻璃的非线性吸收、非线性散射和光限幅特性. 物理学报, 2018, 67(23): 236201. doi: 10.7498/aps.67.20181583
    [14] 张增星, 李东. 基于双极性二维晶体的新型p-n结. 物理学报, 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
    [15] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管. 物理学报, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [16] 王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发. 基于4晶体管像素结构的互补金属氧化物半导体图像传感器总剂量辐射效应研究. 物理学报, 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [17] 孙明娟, 刘要稳. 电流调控磁涡旋的极性和旋性. 物理学报, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [18] 陈跃宁, 徐征, 赵谡玲, 孙钦军, 尹飞飞, 董宇航. 最小二乘拟合计算有机薄膜晶体管迁移率的研究. 物理学报, 2010, 59(11): 8113-8117. doi: 10.7498/aps.59.8113
    [19] 邹建华, 兰林锋, 徐瑞霞, 杨伟, 彭俊彪. 有机薄膜晶体管驱动聚合物发光二极管研究. 物理学报, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [20] 徐云. 单结晶体管二阶RLC串联电路中的周期分岔和混乱运动. 物理学报, 1985, 34(8): 1080-1083. doi: 10.7498/aps.34.1080
计量
  • 文章访问数:  548
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-18
  • 修回日期:  2025-06-05
  • 上网日期:  2025-06-18
  • 刊出日期:  2025-09-05

/

返回文章
返回