搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

65 nm互补金属氧化物半导体场效应和晶体管总剂量效应及损伤机制

马武英 姚志斌 何宝平 王祖军 刘敏波 刘静 盛江坤 董观涛 薛院院

引用本文:
Citation:

65 nm互补金属氧化物半导体场效应和晶体管总剂量效应及损伤机制

马武英, 姚志斌, 何宝平, 王祖军, 刘敏波, 刘静, 盛江坤, 董观涛, 薛院院

Radiation effect and degradation mechanism in 65 nm CMOS transistor

Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Wang Zu-Jun, Liu Min-Bo, Liu Jing, Sheng Jiang-Kun, Dong Guan-Tao, Xue Yuan-Yuan
PDF
导出引用
  • 对65 nm互补金属氧化物半导体工艺下不同尺寸的N型和P型金属氧化物半导体场效应晶体管(NMOSFET和PMOSFET)开展了不同偏置条件下电离总剂量辐照实验.结果表明:PMOSFET的电离辐射响应与器件结构和偏置条件均有很强的依赖性,而NMOSFET表现出较强的抗总剂量性能;在累积相同总剂量时,PMOSFET的辐照损伤远大于NMOSFET.结合理论分析和数值模拟给出了PMOSFET的辐射敏感位置及辐射损伤的物理机制.
    Radiation effect of deep submicron semiconductor device has been extensively studied in recent years. However, fewer researches laid emphasis on the degradation characterization induced by total ionizing dose (TID) damage in nano-device. The purpose of this paper is to analyze the TID effect on the 65 nm commercial complementary metal oxide semiconductor transistor. The n-type and p-type metal oxide semiconductor field effect transistors (NMOSFET and PMOSFET) with different sizes are irradiated by 60Co γ rays at 50 rad (Si)/s, and TID is about 1 Mrad (Si). Static drain-current ID versus gate-voltage VG electrical characteristics are measured with semiconductor parameter measurement equipment. The irradiation bias of NMOSFET is as follows:the ON state is under gate voltage VG=+1.32 V, drain voltage VD is equal to source voltage VS (VD=VS=0), and the OFF state is under drain voltage VD=+1.32 V, gate voltage VG is equal to source voltage VS (VG=VS=0). The irradiation bias of PMOSFET is follows:the ON state is under gate voltage VG=0 V, drain voltage VD is equal to source voltage VS (VD=VS=1.32 V), and the OFF state is under VD=VG=VS=+1.32 V. The experimental results show that the negative shifts in the threshold voltage are observed in PMOSFET after irradiation. Besides, for PMOSFET the degradation of the ON state during radiation is more severe than that of the OFF state, whereas comparatively small effect are present in NMOSFET. Through experimental data and theoretical analysis, we find that the changes in the characteristics of the irradiated devices are attributed to the building up of positive oxide charges in the light doped drain (LDD) spacer oxide, rather than shallow trench isolation oxide degradation. The positive charges induced by TID in PMOSFET LDD spacer oxide will lead to the change of hole concentration in channel, which causes the threshold voltage to shift. What is more, the difference in electric field in the LDD spacer is the main reason for the difference in the radiation response between the two radiation bias conditions. Radiation-enabled technology computer aided design used to establish two-dimensional mode of the transistor. The simulation results of ID-VG curves are in good agreement with the experimental results. Combining theoretical analysis and numerical simulation, the radiation sensitive regions and the damage physical mechanism and radiation sensitivity regions of PMOSFETs are given. This work provides the helpful theory guidance and technical supports for the radiation hardening of the nano-devices used in the radiation environments.
      通信作者: 姚志斌, yaozhibin@nint.ac.cn
    • 基金项目: 国家自然科学基金重大项目(批准号:11690043)和强脉冲辐射模拟与效应国家重点实验室(批准号:SKLIPR1505Z)资助的课题.
      Corresponding author: Yao Zhi-Bin, yaozhibin@nint.ac.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 11690043) and the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, China (Grant No. SKLIPR1505Z).
    [1]

    Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706

    [2]

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull. 62 978 (in Chinese) [陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978]

    [3]

    Qiao H, Li T, Gong H M, Li X Y 2016 J. Infrared Millim. Waves 35 129

    [4]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, FelixJ A, Dodd P E, Philippe P, Véronique F C 2008 Trans. Nucl. Sci. 55 1833

    [5]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 IEEE Trans. Nucl. Sci. 58 1332

    [6]

    Johnston A H, Swimm R T, Allen G R, Miyahira T F 2009 IEEE Trans. Nucl. Sci. 56 1941

    [7]

    Ratti L, Gaioni L, Manghisoni M, Traversi G, Pantano D 2008 IEEE Trans. Nucl. Sci. 55 1992

    [8]

    Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413

    [9]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103]

    [10]

    Peng C, Hu Z Y, Ning B X, Huang H X, Fan S, Zhang Z X, Bi D W, En Y F 2014 Chin. Phys. B 23 090702

    [11]

    Ding L L, Simone G, Marta B, Serena M, Dario B, Alessandro P 2015 IEEE Trans. Nucl. Sci. 62 2899

    [12]

    Gerardin S, Bagatin M, Cornale D, Ding L, Mattiazzo S, Paccagnella A, Faccio F, Michelis S 2015 IEEE Trans. Nucl. Sci. 62 2398

    [13]

    Yu C L 2005 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese) [于春利 2005 博士学位论文 (西安:西安电子科技大学)]

    [14]

    Gerardin S, Gasperin A, Cester A, Paccagnella A, Ghidini G, Candelori A, Bacchetta N, Bisello D, Glaser M 2006 IEEE Trans. Nucl. Sci. 53 1917

    [15]

    He B P, Wang Z J, Sheng J K, Huang S Y 2016 J. Semiconductors 37 124003

    [16]

    Shi M, Wu G J

    [17]

    Liu Z H, Hu C M, Huang J H, Chan T Y, Jeng M C, Ko P K, Cheng Y C 1993 Trans. Nucl. Sci. 40 86

    [18]

    Zebrev G I, Petrov A S, Useinov R G, Ikhsanov R S, Ulimov V N, Anashin V S, Elushov I V, Drosdetsky M G, Galimov A M 2014 IEEE Trans. Nucl. Sci. 61 1785

    [19]

    Wang S H, Lu Q, Wang W H, An X, Huang R 2010 Acta Phys. Sin. 59 1970 (in Chinese) [王思浩, 鲁庆, 王文华, 安霞, 黄如 2010 物理学报 59 1970]

    [20]

    He B P, Ding L L, Yao Z B, Xiao Z G, Huang S Y, W Z J 2011 Acta Phys. Sin. 60 056105 (in Chinese) [何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军 2011 物理学报 60 056105]

  • [1]

    Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706

    [2]

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull. 62 978 (in Chinese) [陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978]

    [3]

    Qiao H, Li T, Gong H M, Li X Y 2016 J. Infrared Millim. Waves 35 129

    [4]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, FelixJ A, Dodd P E, Philippe P, Véronique F C 2008 Trans. Nucl. Sci. 55 1833

    [5]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 IEEE Trans. Nucl. Sci. 58 1332

    [6]

    Johnston A H, Swimm R T, Allen G R, Miyahira T F 2009 IEEE Trans. Nucl. Sci. 56 1941

    [7]

    Ratti L, Gaioni L, Manghisoni M, Traversi G, Pantano D 2008 IEEE Trans. Nucl. Sci. 55 1992

    [8]

    Faccio F, Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413

    [9]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103 (in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103]

    [10]

    Peng C, Hu Z Y, Ning B X, Huang H X, Fan S, Zhang Z X, Bi D W, En Y F 2014 Chin. Phys. B 23 090702

    [11]

    Ding L L, Simone G, Marta B, Serena M, Dario B, Alessandro P 2015 IEEE Trans. Nucl. Sci. 62 2899

    [12]

    Gerardin S, Bagatin M, Cornale D, Ding L, Mattiazzo S, Paccagnella A, Faccio F, Michelis S 2015 IEEE Trans. Nucl. Sci. 62 2398

    [13]

    Yu C L 2005 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese) [于春利 2005 博士学位论文 (西安:西安电子科技大学)]

    [14]

    Gerardin S, Gasperin A, Cester A, Paccagnella A, Ghidini G, Candelori A, Bacchetta N, Bisello D, Glaser M 2006 IEEE Trans. Nucl. Sci. 53 1917

    [15]

    He B P, Wang Z J, Sheng J K, Huang S Y 2016 J. Semiconductors 37 124003

    [16]

    Shi M, Wu G J

    [17]

    Liu Z H, Hu C M, Huang J H, Chan T Y, Jeng M C, Ko P K, Cheng Y C 1993 Trans. Nucl. Sci. 40 86

    [18]

    Zebrev G I, Petrov A S, Useinov R G, Ikhsanov R S, Ulimov V N, Anashin V S, Elushov I V, Drosdetsky M G, Galimov A M 2014 IEEE Trans. Nucl. Sci. 61 1785

    [19]

    Wang S H, Lu Q, Wang W H, An X, Huang R 2010 Acta Phys. Sin. 59 1970 (in Chinese) [王思浩, 鲁庆, 王文华, 安霞, 黄如 2010 物理学报 59 1970]

    [20]

    He B P, Ding L L, Yao Z B, Xiao Z G, Huang S Y, W Z J 2011 Acta Phys. Sin. 60 056105 (in Chinese) [何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军 2011 物理学报 60 056105]

计量
  • 文章访问数:  3770
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-28
  • 修回日期:  2018-02-07
  • 刊出日期:  2019-07-20

65 nm互补金属氧化物半导体场效应和晶体管总剂量效应及损伤机制

  • 1. 强脉冲辐射环境模拟与效应国家重点实验室, 西安 710024;
  • 2. 西北核技术研究所, 西安 710024
  • 通信作者: 姚志斌, yaozhibin@nint.ac.cn
    基金项目: 国家自然科学基金重大项目(批准号:11690043)和强脉冲辐射模拟与效应国家重点实验室(批准号:SKLIPR1505Z)资助的课题.

摘要: 对65 nm互补金属氧化物半导体工艺下不同尺寸的N型和P型金属氧化物半导体场效应晶体管(NMOSFET和PMOSFET)开展了不同偏置条件下电离总剂量辐照实验.结果表明:PMOSFET的电离辐射响应与器件结构和偏置条件均有很强的依赖性,而NMOSFET表现出较强的抗总剂量性能;在累积相同总剂量时,PMOSFET的辐照损伤远大于NMOSFET.结合理论分析和数值模拟给出了PMOSFET的辐射敏感位置及辐射损伤的物理机制.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回