搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦氩射频容性放电发射光谱分析

张秩凡 高俊 雷鹏 周素素 王新兵 左都罗

引用本文:
Citation:

氦氩射频容性放电发射光谱分析

张秩凡, 高俊, 雷鹏, 周素素, 王新兵, 左都罗

Emission spectral diagnosis of argon-helium plasma produced by radio frequency capacitive discharge

Zhang Zhi-Fan, Gao Jun, Lei Peng, Zhou Su-Su, Wang Xin-Bing, Zuo Du-Luo
PDF
导出引用
  • 光抽运亚稳态稀有气体激光器利用放电等离子体作为激光的增益介质.为掌握容性射频放电的放电参数对等离子体各项参数的影响的基本规律,利用等离子体发射光谱法研究了氦氩混合气体在不同装置、不同Ar组分、不同气压和不同射频注入功率下的等离子体参数.利用残留水蒸气产生的OH自由基A2∑+→X2Π的转动光谱分析获得气体温度;利用电子态光谱的玻尔兹曼做图法获得电子激发温度,利用Ar原子696.5 nm谱线的斯塔克展宽获得电子密度.结果表明:气体温度随气压增加略微上升,在一个大气压下改变组分和放电功率,气体温度变化不大;电子激发温度随总气压的下降而上升,且随着Ar组分的增加而略微下降;目前放电条件下的电子密度均在1015 cm-3量级;长时间放电监测表明,残留的水蒸气会导致电子温度的下降,从而降低Ar亚稳态的产率.
    Optically pumped metastable rare-gas laser (OPRGL) have been proposed to overcome the shortcomings of diode-pumped alkali-vapor laser in the recent years. The OPRGL promises to realize high-scale output. But how to achieve enough particle density of metastable atoms is still an open problem. Usually, plasma produced by discharge serves as a gain medium of the OPRGL. Here in this paper, we are to reveal the effects of different discharge parameters on the plasma properties, such as particle density of metastable argon atoms. Gas discharge at a radio frequency of 13.56 MHz is adopted to excite argon atoms. Emission spectrum is employed to study argon and helium radio frequency discharge of optically pumped argon laser at high pressure, different powers of discharge and various content of argon. Gas temperature is obtained by analyzing rotational spectrum (A2∑+ → X2Π) of OH radical generated by residual water vapor and comparing simulated spectrum with the measured spectrum. The electronic excitation temperature relating to electron temperature is obtained by the method of Boltzmann's plot. Stark broadening of the spectrum is used to determine the electron density. The results show that gas temperature rises slightly with the increase of pressure and varies little with content and discharge power changing. The electronic excitation temperature increases with the decrease of pressure evidently and decreases slightly with the increase of content. The electron density is on the order of 1015 cm-3 under various conditions controlled by us. Long time discharge test reveals that residual water vapor can lead to the decrease of electron temperature, and thus reducing the yield of argon metastable state. In conclusion, considering that the higher gas temperature can improve the collision relaxation rate of helium and argon, and the higher electron temperature can improve the rate of production of argon metastable state. Thus a proposal is put forward that appropriately heating gas and reducing gas pressure can obtain higher particle density of metastable argon. Furthermore, It can be found from these results that heating and cleaning the gas during discharge may be candidate methods to obtain and sustain the higher particle density in the plasma.
      通信作者: 左都罗, zuoduluo@hust.edu.cn
    • 基金项目: 武汉光电国家实验室自主创新基金(批准号:0214187070)资助的课题.
      Corresponding author: Zuo Du-Luo, zuoduluo@hust.edu.cn
    • Funds: Project supported by the Foundation for Innovation of Wuhan National Laboratory for Optoelectronics, China (Grant No. 0214187070).
    [1]

    Demyanov A V, Kochetov I V, Mikheyev P A 2013 J. Phys. D 46 375202

    [2]

    Rawlins W T, Galbally-Kinney K L, Davis S J, Hoskinson A R, Hopwood J A, Heaven M C 2015 Opt. Express 23 4804

    [3]

    Han J, Heaven M C 2015 Opt. Lett. 40 1310

    [4]

    Yang Z N, Yu G Q, Wang H Y, Lu Q S, Xu X J 2015 Opt. Express 23 13823

    [5]

    Gao J, He Y Y, Sun P F, Zhang Z F, Wang X B, Zuo D L 2017 J. Opt. Soc. Am. B 34 814

    [6]

    Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627

    [7]

    Gao J, Zhang Z F, Lei P, Wang X B, Zuo D L 2018 High Power Laser and Particle Beams 30 010102 (in Chinese) [高俊, 张秩凡, 雷鹏, 王新兵, 左都罗 2018 强激光与粒子束 30 010102]

    [8]

    Niermann B, Reuter R, Kuschel T, Benedikt J, Boke M, Winter J 2012 Plasma Sources Sci. Technol. 21 034002

    [9]

    Balcon N, Hagelaar G, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782

    [10]

    Eshel B, Perram G P 2018 J. Opt. Soc. Am. B 35 164

    [11]

    Wu Q 2010 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [武启 2010 硕士学位论文 (大连: 大连理工大学)]

    [12]

    Li S Z, Huang W T, Wang D Z 2009 Phys. Plasmas 16 093501

    [13]

    Wu R, Li Y, Zhu S G, Feng H Y, Zhang L, Wang J D 2008 Spectrosc. Spect. Anal. 28 731 (in Chinese) [武蓉, 李燕, 朱顺官, 冯红艳, 张琳, 王俊德 2008 光谱学与光谱分析 28 731]

    [14]

    Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501

    [15]

    Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301

    [16]

    Dong L F, Liu W Y, Yang Y J, Wang S, Ji Y F 2011 Acta Phys. Sin. 60 045202 (in Chinese) [董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞 2011 物理学报 60 045202]

    [17]

    Niermann B, Boke M, Sadeghi N, Winter J 2010 Eur. Phys. J. D 60 489

    [18]

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2011 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp325-326 (in Chinese) [迈克 A 力伯曼, 阿伦 J 里登伯格 著 (蒲以康 译) 2011 等离子体放电原理与材料处理 (北京: 科学出版社)第 325–326页]

    [19]

    Wust K 1992 Rev. Sci. Instrum. 63 2581

    [20]

    Zhai X D, Ding Y J, Peng Z M, Luo R 2012 Acta Phys. Sin. 61 123301 (in Chinese) [翟晓东, 丁艳军, 彭志敏, 罗锐 2012 物理学报 61 123301]

    [21]

    Hibbert A, Biémont E, Godefroid M, Vaeck N 1991 J. Phys. B 24 3943

  • [1]

    Demyanov A V, Kochetov I V, Mikheyev P A 2013 J. Phys. D 46 375202

    [2]

    Rawlins W T, Galbally-Kinney K L, Davis S J, Hoskinson A R, Hopwood J A, Heaven M C 2015 Opt. Express 23 4804

    [3]

    Han J, Heaven M C 2015 Opt. Lett. 40 1310

    [4]

    Yang Z N, Yu G Q, Wang H Y, Lu Q S, Xu X J 2015 Opt. Express 23 13823

    [5]

    Gao J, He Y Y, Sun P F, Zhang Z F, Wang X B, Zuo D L 2017 J. Opt. Soc. Am. B 34 814

    [6]

    Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627

    [7]

    Gao J, Zhang Z F, Lei P, Wang X B, Zuo D L 2018 High Power Laser and Particle Beams 30 010102 (in Chinese) [高俊, 张秩凡, 雷鹏, 王新兵, 左都罗 2018 强激光与粒子束 30 010102]

    [8]

    Niermann B, Reuter R, Kuschel T, Benedikt J, Boke M, Winter J 2012 Plasma Sources Sci. Technol. 21 034002

    [9]

    Balcon N, Hagelaar G, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782

    [10]

    Eshel B, Perram G P 2018 J. Opt. Soc. Am. B 35 164

    [11]

    Wu Q 2010 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [武启 2010 硕士学位论文 (大连: 大连理工大学)]

    [12]

    Li S Z, Huang W T, Wang D Z 2009 Phys. Plasmas 16 093501

    [13]

    Wu R, Li Y, Zhu S G, Feng H Y, Zhang L, Wang J D 2008 Spectrosc. Spect. Anal. 28 731 (in Chinese) [武蓉, 李燕, 朱顺官, 冯红艳, 张琳, 王俊德 2008 光谱学与光谱分析 28 731]

    [14]

    Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501

    [15]

    Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301

    [16]

    Dong L F, Liu W Y, Yang Y J, Wang S, Ji Y F 2011 Acta Phys. Sin. 60 045202 (in Chinese) [董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞 2011 物理学报 60 045202]

    [17]

    Niermann B, Boke M, Sadeghi N, Winter J 2010 Eur. Phys. J. D 60 489

    [18]

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2011 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp325-326 (in Chinese) [迈克 A 力伯曼, 阿伦 J 里登伯格 著 (蒲以康 译) 2011 等离子体放电原理与材料处理 (北京: 科学出版社)第 325–326页]

    [19]

    Wust K 1992 Rev. Sci. Instrum. 63 2581

    [20]

    Zhai X D, Ding Y J, Peng Z M, Luo R 2012 Acta Phys. Sin. 61 123301 (in Chinese) [翟晓东, 丁艳军, 彭志敏, 罗锐 2012 物理学报 61 123301]

    [21]

    Hibbert A, Biémont E, Godefroid M, Vaeck N 1991 J. Phys. B 24 3943

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究. 物理学报, 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [3] 钟东洲, 曾能, 杨华, 徐喆. 外部光注入的光泵浦自旋垂直腔表面发射激光器中的两个混沌偏振分量对两个复杂形状目标中的多区域精确测距. 物理学报, 2021, 70(7): 074206. doi: 10.7498/aps.70.20201693
    [4] 冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究. 物理学报, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [5] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [6] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [7] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究. 物理学报, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [8] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化. 物理学报, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [9] 辛 萍, 孙成伟, 秦福文, 文胜平, 张庆瑜. 反应磁控溅射ZnO/MgO多量子阱的光致荧光光谱分析. 物理学报, 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [10] 张礼杰, 雷 鸣, 王宇明, 李建立, 孙 彧, 刘景和. Yb3+掺杂KY(WO4)2激光晶体生长、结构与光谱分析. 物理学报, 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [11] 邱华檀, 王友年, 马腾才. 碰撞效应对入射到射频偏压电极上离子能量分布和角度分布的影响. 物理学报, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [12] 余建华, 黄建军. 射频放电阻抗测量用于等离子体诊断研究. 物理学报, 2001, 50(12): 2403-2407. doi: 10.7498/aps.50.2403
    [13] 刘红平, 郭远清, 刘效庸, 林洁丽, 李奉延, 李津蕊, 刘煜炎. 15N16O的激光磁共振谱与同位素分子15N17O和15N18O的光谱分析. 物理学报, 1999, 48(11): 2030-2037. doi: 10.7498/aps.48.2030
    [14] 关于存在多种亚稳态时的Townsend放电瞬态过程分析. 物理学报, 1988, 37(6): 996-1002. doi: 10.7498/aps.37.996
    [15] 李先枢, 余永安, 高兆兰. 联合散射分子光谱分析. 物理学报, 1961, 17(2): 113-116. doi: 10.7498/aps.17.113
    [16] 徐升美, 何怡贞. 关于光谱分析中定标曲线斜度的讨论. 物理学报, 1959, 15(4): 178-185. doi: 10.7498/aps.15.178
    [17] 曹思启, 沈礼轩. 金属锆中杂质的光谱分析. 物理学报, 1959, 15(6): 311-315. doi: 10.7498/aps.15.311
    [18] 任大刚, 韩贞玉, 于波, 张功杼, 王鸿章. 合金钢光谱分析通用方法. 物理学报, 1959, 15(4): 173-177. doi: 10.7498/aps.15.173
    [19] 施士元;杨铭珍. 积分强度的光电定量光谱分析法. 物理学报, 1956, 12(6): 577-584. doi: 10.7498/aps.12.577
    [20] 何怡贞, 王桢枢. 铁矿中微量铜的光谱分析. 物理学报, 1954, 10(4): 347-364. doi: 10.7498/aps.10.347
计量
  • 文章访问数:  5231
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-03
  • 修回日期:  2018-04-18
  • 刊出日期:  2019-07-20

/

返回文章
返回