搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氟化镁微瓶腔光频梳光谱分析及优化

郭状 欧阳峰 卢志舟 王梦宇 谭庆贵 谢成峰 魏斌 何兴道

引用本文:
Citation:

氟化镁微瓶腔光频梳光谱分析及优化

郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道

Analysis and optimization of optical frequency comb spectra of magnesium fluoride microbottle resonator

Guo Zhuang, Ouyang Feng, Lu Zhi-Zhou, Wang Meng-Yu, Tan Qing-Gui, Xie Cheng-Feng, Wei Bin, He Xing-Dao
PDF
HTML
导出引用
  • 氟化镁微腔光频梳具有体积小、功耗低、光谱覆盖范围广、色散可调控的优势, 在光通信、中红外光谱等领域有着潜在应用前景. 本文研究了氟化镁回音壁模式微瓶腔平台产生的光频梳光谱特性. 为了优化氟化镁微瓶腔光频梳的光谱分布, 利用有限元法迭代求解了瓶腔结构在不同曲率和轴向模式下的二阶色散及高阶色散, 通过分步傅里叶法求解非线性薛定谔方程仿真了不同轴向模式激励下的光频梳光谱演变过程. 结果表明, 在最佳曲率半径下通过低阶轴向模式激励可以实现宽带范围的近零反常色散调谐, 而高阶轴向模式将导致微瓶腔呈现弱正常色散. 在低阶轴向模式下较弱的反常色散使光频梳的带宽得到展宽, 证明了三阶色散和负的四阶色散可以展宽克尔孤子光频梳; 在高阶轴向模式下弱正常色散抑制了克尔光频梳的产生, 拉曼光频梳占主导地位. 在适宜的泵浦条件下通过调控微瓶腔的轴向模式可以实现克尔孤子光频梳和拉曼光频梳的选择性激发. 本文工作的开展将为氟化镁微腔色散设计及宽带克尔孤子光频梳、拉曼光频梳实验调控提供指导意义.
    Optical frequency comb has shown great potential applications in many areas including molecular spectroscopy, RF photonics, millimeter wave generation, frequency metrology, atomic clock, and dense/ultra-dense wavelength division multiplexed high speed optical communications. Optical frequency comb in the microresonator supporting whispering-gallery mode has attracted widespread interest because of its advantages such as flexible repetition rate, wide bandwidth, and compact size. The exceptionally long photon lifetime and small modal volume enhance light-matter interaction, which enables us to realize intracavity nonlinear frequency conversions with low pump threshold. With the advantages of small size, low power consumption, wide spectral coverage and adjustable dispersion, the magnesium fluoride microresonator optical frequency comb has potential applications in optical communication and mid-infrared spectroscopy.In this work, the spectral characteristics of the optical frequency comb generated by a magnesium fluoride whispering-gallery mode microbottle resonator platform are investigated. In order to optimize the spectral distribution of the optical frequency comb of the magnesium fluoride microbottle resonator, the second-order dispersion and higher-order dispersion of the bottle resonator structure under different curvatures and axial modes are solved iteratively by the finite element method, and the spectral evolutions of the optical frequency comb under different axial mode excitations are simulated by solving the nonlinear Schrödinger equation through the split-step Fourier method. The results show that near-zero anomalous dispersion tuning can be achieved in a wide bandwidth range by exciting low-order axial mode at an optimal radius of curvature, while the high-order axial mode will lead the microbottle resonator to present the weak normal dispersion. The weaker anomalous dispersion in the lower-order axial mode broadens the bandwidth of the optical comb, demonstrating that the third-order dispersion and the negative fourth-order dispersion can broaden the Kerr soliton optical comb; the weak normal dispersion in the higher-order axial mode suppresses the generation of the Kerr optical comb, and the Raman optical comb dominates. The selective excitation of Kerr soliton combs and Raman combs can be achieved by modulating the axial mode of the microbottle resonator under suitable pumping conditions. The present work provides guidance for designing the dispersion in magnesium fluoride microresonator and the experimental tuning of broadband Kerr soliton optical combs and Raman optical combs.
      通信作者: 王梦宇, mengyu@nchu.edu.cn ; 谢成峰, xcf@nchu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62101230, 51865040)、江西省自然科学基金(批准号: 20224BAB202006, 20232ACB212008, 20232BCJ23096, 20232BAB212016)、江西省教育厅基金(批准号: GJJ190508)、重点实验室基金2021-JCJQ-LB-006 (批准号: 6142411512108)和南昌航空大学研究生创新专项资金(批准号: YC2022-108)资助的课题.
      Corresponding author: Wang Meng-Yu, mengyu@nchu.edu.cn ; Xie Cheng-Feng, xcf@nchu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62101230, 51865040), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20224BAB202006, 20232ACB212008, 20232BCJ23096, 20232BAB212016), the Education Department Fund of Jiangxi Province, China (Grant No. GJJ190508), the Foundation of Key Laboratory 2021-JCJQ-LB-006 (Grant No. 6142411512108), and the Special Fund for Graduate Student Innovation of Nanchang Hangkong University, China (Grant No. YC2022-108).
    [1]

    于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军 2021 物理学报 70 160701Google Scholar

    Yu C Q, Ma S C, Chen Z Y, Xiang C C, Li Hai, Zhou T J 2021 Acta Phys. Sin. 70 160701Google Scholar

    [2]

    Del’Haye P, Schliesser P, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J 2007 Nature 450 1214Google Scholar

    [3]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [4]

    Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, Kippenberg T J 2014 Nat. Photon. 8 145Google Scholar

    [5]

    Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M H, Gorodetsky M L, Kippenberg T J 2016 Science 351 357Google Scholar

    [6]

    Sayson N L B, Bi T, Ng V, Pham H, Trainor L S, Schwefel H G L, Coen S, Erkintalo M, Murdoch S G 2019 Nat. Photon. 13 701Google Scholar

    [7]

    Liu J, Weng H, Afridi A A, Li J, Dai J, Ma X, Long H, Zhang Y, Lu Q, Donegan J F, Guo W 2020 Opt. Express 28 19270Google Scholar

    [8]

    Gu J X, Li X, Qi K, Pu K R, Li Z X, Zhang F, Li T, Xie Z D, Xiao M, Jiang X S 2023 Opt. Lett. 48 1100Google Scholar

    [9]

    Savchenkov A A, Matsko A B, Liang W, Ilchenko V S, Seidel D, Maleki L 2011 Nat. Photon. 5 293Google Scholar

    [10]

    Nasir M N M, Murugan G S, Zervas M N 2016 J. Opt. Soc. Am. B 33 1963Google Scholar

    [11]

    Yin Y H, Niu Y X, Qin H Y, Ding M 2019 J. Lightwave Technol. 37 5571Google Scholar

    [12]

    Wang M Y, Yang Y, Lu Z Z, Wang W Q, Zhang W F, Xie C F, Zhong H K, Wu L F, Wu T, Tan Q G, Fu Y J, Wang K Y 2021 J. Lightwave Technol. 39 5917Google Scholar

    [13]

    Jin X Y, Xu X, Gao H R, Wang K Y, Xia H J, Yu L D 2021 Photonics Res. 9 171Google Scholar

    [14]

    Lecaplain C, Javerzac-Galy C, Gorodetsky M L, Kippenberg T J 2016 Nat. Commun. 7 13383Google Scholar

    [15]

    Sumetsky M 2004 Opt. Lett. 29 8Google Scholar

    [16]

    Lin G, Chembo Y K 2015 Opt. Express 23 1594Google Scholar

    [17]

    Murugan G S, Petrovich M N, Jung Y, Wilkinson J S, Zervas M N 2011 Opt. Express 19 20773Google Scholar

    [18]

    He Z Q, Sun C Z, Xiong B, Wang J, Hao Z B, Wang L, Han Y J, Li H T, Gan L, Luo Y 2023 Opt. Lett. 48 2182Google Scholar

    [19]

    Fujii S, Tanabe T 2020 Nanophotonics 9 1087Google Scholar

    [20]

    Chembo Y K, Grudinin I S, Yu N 2015 Phys. Rev. A 92 043818Google Scholar

    [21]

    Ghanbari A, Kashaninia A, Sadr A, Saghaei H 2017 Optik 140 545Google Scholar

    [22]

    王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸 2020 物理学报 69 234203Google Scholar

    Wang M Y, Meng L J, Yang Y, Zhong H K, Wu T, Liu B, Zhang L, Fu Y J, Wang K Y 2020 Acta Phys. Sin. 69 234203Google Scholar

    [23]

    Crespo-Ballesteros M, Matsko A B, Sumetsky M 2023 Commun. Phys. 6 52Google Scholar

    [24]

    Xing T, Xing E, Jia T, Li J, Rong J, Zhou Y, Liu W, Tang J, Liu J 2022 Chin. Phys. B 31 104204Google Scholar

    [25]

    Fujii S, Kato T, Suzuki R, Hori A, Tanabe T 2018 J. Opt. Soc. Am. B 35 100Google Scholar

    [26]

    许凡, 赵妍, 吴宇航, 王文驰, 金雪莹 2022 物理学报 71 184204Google Scholar

    Xu F, Zhao Y, Wu Y H, Wang W C, Jin X Y 2022 Acta Phys. Sin. 71 184204Google Scholar

    [27]

    Yang Q F, Yi X, Yang K Y, Vahala K 2017 Nat. Phys. 13 53Google Scholar

  • 图 1  微瓶腔光频梳示意图

    Fig. 1.  Schematic diagram of the microbottle resonator optical frequency comb.

    图 2  色散求解流程

    Fig. 2.  Dispersion solving process.

    图 3  (a)不同瓶轴长的色散分布; (b) q = 0的微瓶腔轴向模式场分布

    Fig. 3.  (a) Dispersion distribution for different bottle axis lengths; (b) axial mode field distribution of the microbottle resonator for q = 0.

    图 4  不同最大半径的色散分布 (a)二阶色散; (b)总色散

    Fig. 4.  Dispersion distribution with different maximum radii: (a) Second order dispersion; (b) total dispersion.

    图 5  (a)不同轴向模式的色散分布; (b) $ q=40 $的轴向模式场分布

    Fig. 5.  (a) Dispersion distribution of different axial modes; (b) axial mode field distribution for q = 40.

    图 6  轴向模式和功率对光频梳光谱演化的影响 (a) q = 0, S = 0.6; (b) q = 40, S = 0.6; (c) q = 40, S = 1.7; (d) q = 80, S = 0.785; (e) q = 80, S = 0.795; (f) q = 80, S = 0.825

    Fig. 6.  Influences of axial mode and power on the spectral evolution of optical frequency comb: (a) q = 0, S = 0.6; (b) q = 40, S = 0.6; (c) q = 40, S = 1.7; (d) q = 80, S = 0.785; (e) q = 80, S = 0.795; (f) q = 80, S = 0.825.

    图 7  不同高阶色散对孤子光频梳的影响 (a)—(c)腔内光谱图; (d)—(f)孤子频域演化图; (g)—(i)孤子时域演化图

    Fig. 7.  Influence of different higher order dispersions on the soliton optical frequency comb: (a)–(c) Intracavity spectrograms; (d)–(f) soliton frequency domain evolution; (g)–(i) soliton time domain evolution.

  • [1]

    于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军 2021 物理学报 70 160701Google Scholar

    Yu C Q, Ma S C, Chen Z Y, Xiang C C, Li Hai, Zhou T J 2021 Acta Phys. Sin. 70 160701Google Scholar

    [2]

    Del’Haye P, Schliesser P, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J 2007 Nature 450 1214Google Scholar

    [3]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [4]

    Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, Kippenberg T J 2014 Nat. Photon. 8 145Google Scholar

    [5]

    Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M H, Gorodetsky M L, Kippenberg T J 2016 Science 351 357Google Scholar

    [6]

    Sayson N L B, Bi T, Ng V, Pham H, Trainor L S, Schwefel H G L, Coen S, Erkintalo M, Murdoch S G 2019 Nat. Photon. 13 701Google Scholar

    [7]

    Liu J, Weng H, Afridi A A, Li J, Dai J, Ma X, Long H, Zhang Y, Lu Q, Donegan J F, Guo W 2020 Opt. Express 28 19270Google Scholar

    [8]

    Gu J X, Li X, Qi K, Pu K R, Li Z X, Zhang F, Li T, Xie Z D, Xiao M, Jiang X S 2023 Opt. Lett. 48 1100Google Scholar

    [9]

    Savchenkov A A, Matsko A B, Liang W, Ilchenko V S, Seidel D, Maleki L 2011 Nat. Photon. 5 293Google Scholar

    [10]

    Nasir M N M, Murugan G S, Zervas M N 2016 J. Opt. Soc. Am. B 33 1963Google Scholar

    [11]

    Yin Y H, Niu Y X, Qin H Y, Ding M 2019 J. Lightwave Technol. 37 5571Google Scholar

    [12]

    Wang M Y, Yang Y, Lu Z Z, Wang W Q, Zhang W F, Xie C F, Zhong H K, Wu L F, Wu T, Tan Q G, Fu Y J, Wang K Y 2021 J. Lightwave Technol. 39 5917Google Scholar

    [13]

    Jin X Y, Xu X, Gao H R, Wang K Y, Xia H J, Yu L D 2021 Photonics Res. 9 171Google Scholar

    [14]

    Lecaplain C, Javerzac-Galy C, Gorodetsky M L, Kippenberg T J 2016 Nat. Commun. 7 13383Google Scholar

    [15]

    Sumetsky M 2004 Opt. Lett. 29 8Google Scholar

    [16]

    Lin G, Chembo Y K 2015 Opt. Express 23 1594Google Scholar

    [17]

    Murugan G S, Petrovich M N, Jung Y, Wilkinson J S, Zervas M N 2011 Opt. Express 19 20773Google Scholar

    [18]

    He Z Q, Sun C Z, Xiong B, Wang J, Hao Z B, Wang L, Han Y J, Li H T, Gan L, Luo Y 2023 Opt. Lett. 48 2182Google Scholar

    [19]

    Fujii S, Tanabe T 2020 Nanophotonics 9 1087Google Scholar

    [20]

    Chembo Y K, Grudinin I S, Yu N 2015 Phys. Rev. A 92 043818Google Scholar

    [21]

    Ghanbari A, Kashaninia A, Sadr A, Saghaei H 2017 Optik 140 545Google Scholar

    [22]

    王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸 2020 物理学报 69 234203Google Scholar

    Wang M Y, Meng L J, Yang Y, Zhong H K, Wu T, Liu B, Zhang L, Fu Y J, Wang K Y 2020 Acta Phys. Sin. 69 234203Google Scholar

    [23]

    Crespo-Ballesteros M, Matsko A B, Sumetsky M 2023 Commun. Phys. 6 52Google Scholar

    [24]

    Xing T, Xing E, Jia T, Li J, Rong J, Zhou Y, Liu W, Tang J, Liu J 2022 Chin. Phys. B 31 104204Google Scholar

    [25]

    Fujii S, Kato T, Suzuki R, Hori A, Tanabe T 2018 J. Opt. Soc. Am. B 35 100Google Scholar

    [26]

    许凡, 赵妍, 吴宇航, 王文驰, 金雪莹 2022 物理学报 71 184204Google Scholar

    Xu F, Zhao Y, Wu Y H, Wang W C, Jin X Y 2022 Acta Phys. Sin. 71 184204Google Scholar

    [27]

    Yang Q F, Yi X, Yang K Y, Vahala K 2017 Nat. Phys. 13 53Google Scholar

  • [1] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案. 物理学报, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用. 物理学报, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [3] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [4] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [5] 徐昕, 金雪莹, 高浩然, 程杰, 陆洋, 陈东, 于连栋. 耦合光学微腔的频率调谐过程分析. 物理学报, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [6] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] 廖小瑜, 曹俊诚, 黎华. 太赫兹半导体激光光频梳研究进展. 物理学报, 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [8] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [9] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [10] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [11] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [12] 王延娜, 赵迪, 方爱平, 蒋臣威, 高韶燕, 李福利. 利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹. 物理学报, 2015, 64(22): 224214. doi: 10.7498/aps.64.224214
    [13] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [14] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模. 物理学报, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [15] 杜金锦, 李文芳, 文瑞娟, 李刚, 张天才. 超高精细度微光学腔共振频率及有效腔长的精密测量. 物理学报, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [16] 韩海年, 张金伟, 张青, 张龙, 魏志义. 飞秒激光共振增强腔的理论与实验研究. 物理学报, 2012, 61(16): 164206. doi: 10.7498/aps.61.164206
    [17] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响. 物理学报, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [18] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [19] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [20] 刘玉玲, 卢振武. 亚波长衍射微透镜色散的数值分析. 物理学报, 2004, 53(6): 1782-1787. doi: 10.7498/aps.53.1782
计量
  • 文章访问数:  2409
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2023-10-11
  • 上网日期:  2023-11-02
  • 刊出日期:  2024-02-05

/

返回文章
返回