搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹

王延娜 赵迪 方爱平 蒋臣威 高韶燕 李福利

引用本文:
Citation:

利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹

王延娜, 赵迪, 方爱平, 蒋臣威, 高韶燕, 李福利

Precision measurement of single-atom trajectories in higher-order Laguerre-Gaussian transverse modes of a Fabry-Perot cavity

Wang Yan-Na, Zhao Di, Fang Ai-Ping, Jiang Chen-Wei, Gao Shao-Yan, Li Fu-Li
PDF
导出引用
  • 研究了冷原子与法布里-珀罗腔内拉盖尔-高斯横模强耦合相互作用体系的透射光谱, 分析了透射光谱与原子在腔中运动轨迹的关系. 结果表明, 与厄米特-高斯横模相比, 拉盖尔-高斯横模的腔场与原子的最大耦合系数几乎不随阶数的增加而变化, 使得探测光谱的对比度受模式阶数的影响较小. 在拉盖尔-高斯横模场分布的圆环边缘附近, 原子运动轨迹的微小偏移会引起透射光谱的很大变化, 因此在这些位置可以实现原子运动轨迹的高精度探测.
    A coupled quantum system composed of cavity field and atoms is one of the main research contents of cavity quantum electrodynamics. It can be used to realize single atom manipulation and measurement, and has important significance for studying the interaction between light and the atom, preparing quantum states and quantum entanglement. Current research work mainly focuses on two aspects. One is to achieve the atom trapping via the feedback control of the trapping laser intensity. The other is to measure the single atomic motion in a Fabry-Perot cavity by using Hermite-Gaussian transverse modes. The detection of the atomic trajectories has been realized via the observation of transmission spectra of the strong coupling system composed of cold atoms and Hermite-Gaussian transverse modes in a Fabry-Perot cavity. In order to observe the atomic motion trajectories in the cavity, we theoretically study the transmission spectrum of a strong coupling system composed of cold atoms and Laguerre-Gaussian transverse modes in a Fabry-Perot cavity in this paper. We calculate the relationship between the coupling coefficient and the mode number of Laguerre-Gaussian transverse modes. The result shows that with the increase of Laguerre-Gaussian transverse mode number, the maximum coupling coefficient between the atoms and cavity fields is almost unchanged, so the contrast of the detected spectrum is nearly independent of the mode number. Analysis shows that Laguerre-Gaussian transverse mode provides more abundant information about atomic motion trajectory than Hermite-Gaussian transverse mode. The field distribution of Laguerre-Gaussian transverse mode is ring-shaped. Owing to the ring shape, the atoms dropped at different positions experience different electric field intensities, and the detected transmission spectra are changed. Therefore, we can implement the high precision distinguishment of the atomic trajectories by observing the features of the transmission spectra such as the number of the transmission peaks and their positions. Furthermore, a small deviation of the atomic motion trajectories, on the edges of the rings of the electric field, may induce great change in transmission spectrum, and then we can very accurately detect the atomic motion around these positions.
    [1]

    McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, Kimble H J 2004 Science 303 1992

    [2]

    Mcke M, Bochmann J, Hahn C, Neuzner A, Nlleke C, Reiserer A, Rempe G, Ritter S 2013 Phys. Rev. A 87 063805

    [3]

    Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901

    [4]

    Kimble H J 2003 Phys. Rev. Lett. 90 249801

    [5]

    Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253

    [6]

    Kimble H J 2008 Nature 453 1023

    [7]

    Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488

    [8]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987

    [9]

    Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S551

    [10]

    Lynn T W, Birnbaum K, Kimble H J 2005 J. Opt. B 7 S215

    [11]

    Fischer T, Maunz P, Pinkse P W H, Puppe T, Rempe G 2002 Phys. Rev. Lett. 88 163002

    [12]

    Puppe T, Schuster T, Grothe A, Kubanek A, Murr K, Pinkse P W H, Rempe G 2007 Phys. Rev. Lett. 99 013002

    [13]

    Kubanek A, Koch M, Sames C, Ourjoumtsev A, Pinkse P W H, Murr K, Rempe G 2009 Nature 462 898

    [14]

    Kubanek A, Koch M, Sames C, Ourjoumtsev A, Wilk T, Pinkse P W H, Rempe G 2011 Appl. Phys. B 102 433

    [15]

    Liu T, Zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 物理学报 53 1346]

    [16]

    Liu L W, Tan L, Huang G 2011 Chin. Phys. B 20 014205

    [17]

    Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393

    [18]

    Hood C J, Chapman M S, Lynn T W, Kimble H J 1998 Phys. Rev. Lett. 80 4157

    [19]

    Kimble H J 1998 Phys. Scr. T76 127

    [20]

    Puppe T, Maunz P, Fischer T, Pinkse P W H, Rempe G 2004 Phys. Scr. T112 7

    [21]

    Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 044203

    [22]

    Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804(R)

    [23]

    Li W F, Du J J, Wen R J, Zhang P F, Li G, Zhang T C 2014 Acta Phys. Sin. 63 244205 (in Chinese) [李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才 2014 物理学报 63 244205]

    [24]

    Du J J, Li W F, Zhang P F, Li G, Wang J M, Zhang T C 2012 Front Phys. 7 435

    [25]

    Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 103 083117

    [26]

    Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 物理学报 62 194203]

    [27]

    Kotlyar V V, Khonina S N, Almazov A A, Soifer V A, Jefimovs K, Turunen J 2006 J. Opt. Soc. Am. A 23 43

  • [1]

    McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, Kimble H J 2004 Science 303 1992

    [2]

    Mcke M, Bochmann J, Hahn C, Neuzner A, Nlleke C, Reiserer A, Rempe G, Ritter S 2013 Phys. Rev. A 87 063805

    [3]

    Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901

    [4]

    Kimble H J 2003 Phys. Rev. Lett. 90 249801

    [5]

    Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253

    [6]

    Kimble H J 2008 Nature 453 1023

    [7]

    Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488

    [8]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987

    [9]

    Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S551

    [10]

    Lynn T W, Birnbaum K, Kimble H J 2005 J. Opt. B 7 S215

    [11]

    Fischer T, Maunz P, Pinkse P W H, Puppe T, Rempe G 2002 Phys. Rev. Lett. 88 163002

    [12]

    Puppe T, Schuster T, Grothe A, Kubanek A, Murr K, Pinkse P W H, Rempe G 2007 Phys. Rev. Lett. 99 013002

    [13]

    Kubanek A, Koch M, Sames C, Ourjoumtsev A, Pinkse P W H, Murr K, Rempe G 2009 Nature 462 898

    [14]

    Kubanek A, Koch M, Sames C, Ourjoumtsev A, Wilk T, Pinkse P W H, Rempe G 2011 Appl. Phys. B 102 433

    [15]

    Liu T, Zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 物理学报 53 1346]

    [16]

    Liu L W, Tan L, Huang G 2011 Chin. Phys. B 20 014205

    [17]

    Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393

    [18]

    Hood C J, Chapman M S, Lynn T W, Kimble H J 1998 Phys. Rev. Lett. 80 4157

    [19]

    Kimble H J 1998 Phys. Scr. T76 127

    [20]

    Puppe T, Maunz P, Fischer T, Pinkse P W H, Rempe G 2004 Phys. Scr. T112 7

    [21]

    Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 044203

    [22]

    Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804(R)

    [23]

    Li W F, Du J J, Wen R J, Zhang P F, Li G, Zhang T C 2014 Acta Phys. Sin. 63 244205 (in Chinese) [李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才 2014 物理学报 63 244205]

    [24]

    Du J J, Li W F, Zhang P F, Li G, Wang J M, Zhang T C 2012 Front Phys. 7 435

    [25]

    Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 103 083117

    [26]

    Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 物理学报 62 194203]

    [27]

    Kotlyar V V, Khonina S N, Almazov A A, Soifer V A, Jefimovs K, Turunen J 2006 J. Opt. Soc. Am. A 23 43

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用. 物理学报, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [3] 刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨. 基于腔内球差选模产生高阶拉盖尔-高斯模式激光. 物理学报, 2022, 71(1): 014204. doi: 10.7498/aps.71.20211514
    [4] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输. 物理学报, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [5] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [6] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [7] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [8] 徐昕, 金雪莹, 高浩然, 程杰, 陆洋, 陈东, 于连栋. 耦合光学微腔的频率调谐过程分析. 物理学报, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [9] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [10] 李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫. 量子点操控的光子探测和圆偏振光子发射. 物理学报, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [11] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [12] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩. 物理学报, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [13] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模. 物理学报, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [14] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [15] 杜金锦, 李文芳, 文瑞娟, 李刚, 张天才. 超高精细度微光学腔共振频率及有效腔长的精密测量. 物理学报, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [16] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [17] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [18] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [19] 刘普生, 吕百达. 拉盖尔-高斯模叠加而成的部分相干光的相干涡旋. 物理学报, 2007, 56(5): 2623-2628. doi: 10.7498/aps.56.2623
    [20] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
计量
  • 文章访问数:  5446
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-20
  • 修回日期:  2015-06-18
  • 刊出日期:  2015-11-05

/

返回文章
返回