搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微腔光梳的产生、发展及应用

金星 肖莘宇 龚旗煌 杨起帆

引用本文:
Citation:

微腔光梳的产生、发展及应用

金星, 肖莘宇, 龚旗煌, 杨起帆

Generation, development, and application of microcombs

Jin Xing, Xiao Shen-Yu, Gong Qi-Huang, Yang Qi-Fan
PDF
HTML
导出引用
  • 光频梳提供了光波和微波相干链接的桥梁, 它的诞生革命性地提高了人们对于光学频率和时间的测量精度, 深刻影响着当今世界科技的发展. 最早的光频梳产生于锁模激光器系统, 然而基于锁模激光器的光梳, 因其系统复杂、体积庞大和价格高昂, 一般仅限于实验室应用. 近年来一种新型光频梳应运而生, 并有望解决上述问题. 它是通过连续激光耦合进入高品质光学微腔而激发的, 在频域上通过四波混频产生等间距的频率分量, 在时域上则利用非线性效应平衡微腔色散而形成锁模, 这种新型光频梳被称为“微腔光梳”. 相比于传统光梳, 微腔光梳有着尺寸小、可集成、功耗低和重频范围大等优势, 它的出现标志着产生光梳迈向芯片级尺寸的时代, 并引起了科学界和工业界越来越多的关注. 本文首先概述了微腔光梳的产生与发展历程, 随后介绍微腔光梳在实际应用方面取得的进展, 最后对微腔光梳当前的问题进行总结, 并对未来发展进行展望.
    Optical frequency comb (OFC) has coherently bridged the gap between light and microwave. Its advent has brought revolutionary progress to the accurate measurements of optical frequency and time, and profoundly promoted the technological development of technology of the contemporary world. The earliest optical frequency combs are generated from mode-locked laser systems. However, optical frequency combs based on mode-locked lasers have typically been limited to laboratory applications, due to their complexity, large size, and high cost. In recent years, a new type of optical frequency comb has emerged to address these problems. It is excited by continuous-wave laser coupling into a high-quality optical microresonator, generating equidistant sidebands in the frequency domain through four-wave mixing, and achieving mode locking in the time domain by using nonlinear effects to balance dispersion. This novel optical frequency comb is named "microcombs". Compared with traditional optical frequency combs, microcombs offer advantages such as compact size, integrability, low power consumption, and a wide repetition frequency range. Their occurrence marks the era of the generation of optical frequency combs towards chip-scale size and has aroused increasing attention from the scientific and industrial communities. This paper is ended by summarizing the current challenges faced by microcombs and giving a prospective outlook on their future development.
      通信作者: 杨起帆, leonardoyoung@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB2800601)、北京市自然科学基金(批准号: Z210004)和国家自然科学基金(92150108)资助的课题.
      Corresponding author: Yang Qi-Fan, leonardoyoung@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFB2800601), the Natural Science Foundation of Beijing, China (Grant No. Z210004), and the National Natural Science Foundation of China (Grant No. 92150108).
    [1]

    Chebotayev V P, Goldort V G, Klementyev V M, et al. 1982 Appl. Phys. B 29 63Google Scholar

    [2]

    Schnatz H, Lipphardt B, Helmcke J, et al. 1996 Phys. Rev. Lett. 76 18Google Scholar

    [3]

    Diddams S A, Jones D J, Ye J, et al. 2000 Phys. Rev. Lett. 84 5102Google Scholar

    [4]

    Fortier T, Baumann E 2019 Commun. Phys. 2 153Google Scholar

    [5]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [6]

    Diddams S A, Vahala K, Udem T 2020 Science 369 eaay3676Google Scholar

    [7]

    Reichert J, Holzwarth R, Udem T, et al. 1999 Opt. Commun. 172 59Google Scholar

    [8]

    Udem T, Diddams S A, Vogel K R, et al. 2001 Phys. Rev. Lett. 86 4996Google Scholar

    [9]

    Holzwarth R, Udem T, Hänsch T W, et al. 2000 Phys. Rev. Lett. 85 2264Google Scholar

    [10]

    Holzwarth R, Nevsky A Y, Zimmermann M, et al. 2001 Appl. Phys. B 73 269Google Scholar

    [11]

    Stenger J, Schnatz H, Tamm C, et al. 2002 Phys. Rev. Lett. 88 073601Google Scholar

    [12]

    Rosenband T, Hume D B, Schmidt P O, et al. 2008 Science 319 1808Google Scholar

    [13]

    Godun R M, Nisbet-Jones P B R, Jones J M, et al. 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [14]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [15]

    Hänsch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [16]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42Google Scholar

    [17]

    Jones D J, Diddams S A, Ranka J K, et al. 2000 Science 288 635Google Scholar

    [18]

    Bartels A, Heinecke D, Diddams S A 2009 Science 326 681Google Scholar

    [19]

    Murata H, Morimoto A, Kobayashi T, et al. 2000 IEEE J. Sel. Top. Quant. 6 1325Google Scholar

    [20]

    Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics. 12 223Google Scholar

    [21]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [22]

    Kippenberg T J, Gaeta A L, Lipson M, et al. 2018 Science 361 6402

    [23]

    Herr T, Brasch V, Jost J D, et al. 2014 Nat. Photonics 8 145Google Scholar

    [24]

    Lao C, Jin X, Chang L, et al. 2023 Nat. Commun. 14 1802Google Scholar

    [25]

    Xue X, Xuan Y, Liu Y, et al. 2015 Nat. Photonics 9 594Google Scholar

    [26]

    Lobanov V E, Lihachev G, Kippenberg T J, et al. 2015 Opt. Express 23 7713Google Scholar

    [27]

    Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 083904Google Scholar

    [28]

    Savchenkov A A, Matsko A B, Strekalov D, et al. 2004 Phys. Rev. Lett. 93 243905Google Scholar

    [29]

    Del’Haye P, Schliesser A, Arcizet O, et al. 2007 Nature 450 1214Google Scholar

    [30]

    Herr T, Hartinger K, Riemensberger J, et al. 2012 Nat. Photonics 6 480Google Scholar

    [31]

    Carmon T, Yang L, Vahala K J 2004 Opt. Express 12 4742Google Scholar

    [32]

    Brasch V, Geiselmann M, Pfeiffer M H P, et al. 2016 Opt. Express 24 29312Google Scholar

    [33]

    Yi X, Yang Q F, Yang K Y, et al. 2016 Opt. Lett. 41 2037Google Scholar

    [34]

    Zhou H, Geng Y, Cui W, et al. 2019 Light-Sci. Appl. 8 50Google Scholar

    [35]

    Zhang S, Silver J M, Del Bino L, et al. 2019 Optica 6 206Google Scholar

    [36]

    Nishimoto K, Minoshima K, Yasui T, et al. 2022 Opt. Lett. 47 281Google Scholar

    [37]

    Zheng H, Sun W, Ding X, et al. 2023 arXiv: 2309.03586 [physics. optics

    [38]

    Joshi C, Jang J K, Luke K, et al. 2016 Opt. Lett. 41 2565Google Scholar

    [39]

    Xue X, Xuan Y, Wang C, et al. 2016 Opt. Express 24 687Google Scholar

    [40]

    Guo H, Karpov M, Lucas E, et al. 2017 Nat. Phys. 13 94Google Scholar

    [41]

    Shen B, Chang L, Liu J, et al. 2020 Nature 582 365Google Scholar

    [42]

    Voloshin A S, Kondratiev N M, Lihachev G V, et al. 2021 Nat. Commun. 12 235Google Scholar

    [43]

    Jin W, Yang Q F, Chang L, et al. 2021 Nat. Photonics 15 346Google Scholar

    [44]

    Lihachev G, Weng W, Liu J, et al. 2022 Nat. Commun. 13 1771Google Scholar

    [45]

    Brasch V, Geiselmann M, Herr T, et al. 2016 Science 351 357Google Scholar

    [46]

    Li Q, Briles T C, Westly D A, et al. 2017 Optica 4 193Google Scholar

    [47]

    Briles T C, Stone J R, Drake T E, et al. 2018 Opt. Lett. 43 2933Google Scholar

    [48]

    Yi X, Yang Q F, Yang K Y, et al. 2015 Optica 2 1078Google Scholar

    [49]

    Yao L, Liu P, Chen H J, et al. 2022 Optica 9 561Google Scholar

    [50]

    Lee H, Chen T, Li J, et al. 2012 Nat. Photonics 6 369Google Scholar

    [51]

    Yang K Y, Oh D Y, Lee S H, et al. 2018 Nat. Photonics 12 297Google Scholar

    [52]

    Yu M, Okawachi Y, Griffith A G, et al. 2016 Optica 3 854Google Scholar

    [53]

    Wang C, Fang Z, Yi A, et al. 2021 Light-Sci. Appl. 10 139Google Scholar

    [54]

    He Y, Yang Q F, Ling J, et al. 2019 Optica 6 1138Google Scholar

    [55]

    Wang C, Zhang M, Yu M, et al. 2019 Nat. Commun. 10 978Google Scholar

    [56]

    Gong Z, Bruch A, Shen M, et al. 2018 Opt. Lett. 43 4366Google Scholar

    [57]

    Pu M, Ottaviano L, Semenova E, et al. 2016 Optica 3 823Google Scholar

    [58]

    Chang L, Xie W, Shu H, et al. 2020 Nat. Commun. 11 1331Google Scholar

    [59]

    Weng W, Lucas E, Lihachev G, et al. 2019 Phys. Rev. Lett. 122 013902Google Scholar

    [60]

    Jung H, Yu S P, Carlson D R, et al. 2021 Optica 8 811Google Scholar

    [61]

    Shu H, Chang L, Lao C, et al. 2023 Adv. Photonics 5 036007Google Scholar

    [62]

    Stern B, Ji X, Okawachi Y, et al. 2018 Nature 562 401Google Scholar

    [63]

    Matsko A B, Liang W, Savchenkov A A, et al. 2016 Opt. Lett. 41 2907Google Scholar

    [64]

    Yi X, Yang Q F, Zhang X, et al. 2017 Nat. Commun. 8 14869Google Scholar

    [65]

    Yuan Z, Gao M, Yu Y, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [66]

    Anderson M H, Weng W, Lihachev G, et al. 2022 Nat. Commun. 13 4764Google Scholar

    [67]

    Moille G, Perez E F, Stone J R, et al. 2021 Nat. Commun. 12 7275Google Scholar

    [68]

    Chen H J, Ji Q X, Wang H, et al. 2020 Nat. Commun. 11 2336Google Scholar

    [69]

    Xue X, Wang P H, Xuan Y, et al. 2017 Laser Photonics Rev. 11 1600276Google Scholar

    [70]

    Obrzud E, Lecomte S, Herr T 2017 Nat. Photonics 11 600Google Scholar

    [71]

    Bao H, Cooper A, Rowley M, et al. 2019 Nat. Photonics 13 384Google Scholar

    [72]

    Xue X, Zheng X, Zhou B 2019 Nat. Photonics 13 616Google Scholar

    [73]

    Helgason Ó B, Girardi M, Ye Z, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [74]

    Coillet A, Balakireva I, Henriet R, et al. 2013 IEEE Photonics J. 5 6100409Google Scholar

    [75]

    Cole D C, Lamb E S, Del’Haye P, et al. 2017 Nat. Photonics 11 671Google Scholar

    [76]

    Karpov M, Pfeiffer M H P, Guo H, et al. 2019 Nat. Phys. 15 1071Google Scholar

    [77]

    Lu Z, Chen H J, Wang W, et al. 2021 Nat. Commun. 12 3179Google Scholar

    [78]

    Wang H, Shen B, Yu Y, et al. 2022 Phys. Rev. A 106 053508Google Scholar

    [79]

    Li J, Bao C, Ji Q X, et al. 2022 Optica 9 231Google Scholar

    [80]

    Lucas E, Yu S P, Briles T C, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [81]

    Xue X X, Grelu P, Yang B, et al. 2023 Light-Sci. Appl. 12 19Google Scholar

    [82]

    Wildi T, Gaafar M A, Voumard T, et al. 2023 Optica 10 650Google Scholar

    [83]

    Yang Q F, Ji Q X, Wu L, et al. 2021 Nat. Commun. 12 1442Google Scholar

    [84]

    Bai Y, Zhang M, Shi Q, et al. 2021 Phys. Rev. Lett. 126 063901Google Scholar

    [85]

    Gorodetsky M L, Grudinin I S 2004 JOSA B 21 697Google Scholar

    [86]

    Moille G, Lu X, Rao A, et al. 2019 Phys. Rev. Applied 12 034057Google Scholar

    [87]

    Huang G, Lucas E, Liu J, et al. 2019 Phys. Rev. A 99 061801Google Scholar

    [88]

    Drake T E, Stone J R, Briles T C, et al. 2020 Nat. Photonics 14 480Google Scholar

    [89]

    Matsko A B, Maleki L 2013 Opt. Express 21 28862Google Scholar

    [90]

    Bao C, Suh M G, Shen B, et al. 2021 Nat. Phys. 17 462Google Scholar

    [91]

    Jin X, Lv Z, Yang Q F 2023 arXiv: 2311.06463 [physics. optics

    [92]

    Marin-Palomo P, Kemal J N, Karpov M, et al. 2017 Nature 546 274Google Scholar

    [93]

    Suh M G, Yang Q F, Yang K Y, et al. 2016 Science 354 600Google Scholar

    [94]

    Feldmann J, Youngblood N, Karpov M, et al. 2021 Nature 589 52Google Scholar

    [95]

    Riemensberger J, Lukashchuk A, Karpov M, et al. 2020 Nature 581 164Google Scholar

    [96]

    Kues M, Reimer C, Roztocki P, et al. 2017 Nature 546 622Google Scholar

    [97]

    Liang W, Eliyahu D, Ilchenko V S, et al. 2015 Nat. Commun. 6 1

    [98]

    Tetsumoto T, Nagatsuma T, Fermann M E, et al. 2021 Nat. Photonics 15 516Google Scholar

    [99]

    Newman Z L, Maurice V, Drake T, et al. 2019 Optica 6 680Google Scholar

    [100]

    Spencer D T, Drake T, Briles T C, et al. 2018 Nature 557 81Google Scholar

    [101]

    Trocha P, Karpov M, Ganin D, et al. 2018 Science 359 887Google Scholar

    [102]

    Lukashchuk A, Riemensberger J, Tusnin A, et al. 2023 Nat. Photonics 17 814Google Scholar

    [103]

    Chen R, Shu H, Shen B, et al. 2023 Nat. Photonics 17 306Google Scholar

    [104]

    Yang Q F, Shen B, Wang H, et al. 2019 Science 363 965Google Scholar

    [105]

    Sun S, Wang B, Liu K, et al. 2023 arXiv: 2305.13575 [physics. optics

    [106]

    Kudelin I, Groman W, Ji Q X, et al. 2023 arXiv: 2307.08937 [physics. optics

    [107]

    Kues M, Reimer C, Lukens J M, et al. 2019 Nat. Photonics 13 170Google Scholar

    [108]

    Yang Z, Jahanbozorgi M, Jeong D, et al. 2021 Nat. Commun. 12 4781Google Scholar

    [109]

    Jahanbozorgi M, Yang Z, Sun S, et al. 2023 Optica 10 1100Google Scholar

  • 图 1  光学频率梳简介[5,6] (a) 光学频率梳时域波形图, 相邻脉冲之间的时间间隔与相位偏移分别对应光梳重频频率$ {f}_{{\mathrm{r}}} $与载波偏移频率$ {f}_{{\mathrm{o}}} $; (b)光频梳频谱图与f - 2f自参考示意图, 第n根梳齿经过二倍频后与第2n根梳齿拍频即可得到载波偏移频率$ {f}_{{\mathrm{o}}} $; (c)—(e)锁模光纤激光器、电光频梳与微腔光梳示意图

    Fig. 1.  An introduction to optical frequency comb[5,6]: (a) Temporal waveform of optical frequency comb, the time interval and phase shift between adjacent pulses correspond to the repetition rate $ {f}_{{\mathrm{r}}} $ and the carrier frequency offset $ {f}_{{\mathrm{o}}} $ of the optical frequency comb; (b) optical spectra of the optical frequency comb and schematic diagram of f - 2f self-reference, the carrier offset frequency $ {f}_{{\mathrm{o}}} $ can be obtained by doubling the frequency of the nth comb line and then beating with the 2n-th comb tooth; (c) schematic diagram of mode-locked fiber laser, electro-optical comb and microcombs.

    图 2  微腔光梳产生的装置和原理图[21,22,24] (a)产生微腔光梳的实验装置图, 连续可调激光经过放大器放大后泵浦微腔产生光梳, 同时用光电探测器探测拍频信号; (b)微腔光梳产生的频域原理图, 泵浦激光经过简并和非简并四波混频产生一系列等间隔的边带; (c)孤子锁模原理图, 孤子脉冲由于增益与损耗, 色散和非线性之间的双重平衡而保持稳态; (d) 亮孤子(左)和暗脉冲(右)的时域波形图

    Fig. 2.  The device and schematic diagram of microcombs generation[21,22,24]: (a) Experimental setup for generating microcombs, tunable continuously laser pumps the microresonators to generate microcombs, at the same time, a photodetector is used to detect the beat frequency signal; (b) schematic diagram for microcombs generation in frequency domain, the pump laser produces a series of equally spaced sidebands through degenerate and non-degenerate four-wave mixing process; (c) schematic diagram of soliton mode-locking, the soliton pulse remains stable due to a double balance between gain and loss, dispersion and nonlinearity; (d) temporal waveform of bright soliton (left) and dark pulse (right).

    图 3  微腔光梳的产生过程[23,33,40] (a) 泵浦激光由腔模蓝失谐向红失谐扫频过程中腔内光场总功率演化过程, 不同颜色区域代表腔内光场处于不同的态, 其中绿色区域为孤子存在区域, 黄色为呼吸子区域, 红色区域孤子不能存在; (b) 图(a)中标注的不同状态区域腔内光场分布及对应光谱图; (c)“功率踢”方法产生孤子光梳激光器频率与功率、光梳功率以及激光与腔模失谐时序变化图; (d)热辅助激光稳定微腔温度原理图; (e)反向扫频方法产生单孤子光梳原理示意图

    Fig. 3.  Generation process of microcombs[23,33,40]: (a) The intracavity power’s evolution process during pump laser frequency scanning from the blue to red detuning of the cavity mode, various color regions represent different states of the optical field within the cavity, the green region is the solitons-exiting region, the yellow region is the breathers’ region, and the red region is the region where solitons cannot exist; (b) temporal intracavity power and optical power spectra of different state regions marked in Fig. (a); (c) timing series of the pump laser frequency and power, optical frequency comb power and the detuning between the pump laser and cavity mode in power kick method; (d) schematic diagram of thermal assisted laser stabilizing temperature of the microresonator; (e) schematic diagram of generating single-soliton optical frequency comb by backward tuning method.

    图 4  自注入锁定方法产生微腔光梳[41,43] (a)自注入锁定原理示意图, 激光器与微腔之间没有光隔离器, 微腔散射的光可以原路返回激光器腔中反馈腔内光场; (b)自注入锁定过程相图以及动力学曲线, 红色为孤子光梳存在区域, 绿色为调制不稳定态区域, 黑色的线为自注入锁定过程态的演化轨迹; (c)自注入锁定过程光梳功率与拍频信号演化过程; (d), (e)自注入锁定产生的亮孤子光梳和暗脉冲光梳频谱图

    Fig. 4.  Generate microcombs via self-injection locking[41,43]: (a) Schematic diagram of self-injection locking, there is no optical isolator between the laser and the microresonator, the light scattered by the microresonator can return to the laser cavity in the original path to feedback the light field in the laser cavity; (b) phase diagram and dynamic curve of self-injection locking, the red region is the soliton-exiting region, and the green region is modulation instability region, the black curve is the evolution trajectory of self-injection locking; (c) the evolution of comb line power and beat note signal in self-injection locking process; (d), (e) the optical spectra of bright soliton and dark pulse optical frequency comb generated by self-injection locking method.

    图 5  产生微腔光梳的各种材料平台[46,4954,5860]

    Fig. 5.  Various material platforms to generate micocombs[46,4954,5860].

    图 6  微腔光梳的频谱宽度[45] (a) 集成氮化硅微腔扫描电子显微镜及其横截面图像; (b)利用色散波来拓展微腔光梳频谱宽度, 1930 nm处的色散波大大拓宽了频谱范围; (c)图(a)中腔的集成色散

    Fig. 6.  The spectra bandwidth of microcombs[45]: (a) The scanning electron microscopy images and cross section of integrated Si3N4 microresonator; (b) expand the bandwidth of microcombs using dispersive waves, the dispersive waves located at 1930 nm greatly broaden the spectrum range; (c) integrated dispersion of the microresonator in Fig. (a).

    图 7  微腔光梳的效率[6973] (a) 微腔光梳产生过程中能量流动示意图; (b) 暗脉冲光梳频谱图, 插图为耦合出腔的暗脉冲时域波形图; (c) 脉冲泵浦产生微腔光梳示意图; (d) 激光腔孤子光梳示意图; (e) 使用辅助腔回收泵浦光示意图; (f) 使用耦合腔偏移泵浦模式频率

    Fig. 7.  Efficiency of microcombs[6973]: (a) Energy flow chart of microcombs generation; (b) optical spectra of dark pulse optical frequency comb, the inset is the temporal waveform of dark pulse emitted out of the microresonator; (c) schematic diagram of pulse pumping microcombs; (d) schematic diagram of laser-cavity soliton; (e) schematic diagram of recycling pump by using auxiliary cavity; (f) shift the frequency of pump mode using auxiliary cavity.

    图 8  光谱顶部平坦的微腔光梳[80,81] (a) 多频率光子晶体微腔示意图, 微腔内部刻蚀了不同空间周期的光栅结构来调节色散; (b) 多频率光子晶体微腔色散曲线, 图(a)中的光栅结构导致了模式分裂成蓝移和红移的模式; (c), (d) 多频率光子晶体微腔中产生的亮孤子和暗脉冲光梳光谱图; (e) 通过滤波产生奈奎斯特孤子光梳的原理示意图; (f) 不同滤波阶数产生的奈奎斯特孤子光梳光谱图

    Fig. 8.  Flat-top micocommbs[80,81]: (a) Schematic diagram of multi-frequency photonic crystal microresonators, grating structures with different spatial periods are etched inside the microresonator to adjust the dispersion; (b) dispersion curve of multi frequency photonic crystal microcavities, where the grating structures in fig. (a) leads to single mode splitting to blue- and redshifted modes; (c), (d) the optical spectra of bright soliton and dark pulse generated in multi-frequency photonic crystal microresonators; (e) schematic diagram of generating Nyquist soliton by spectral filtering; (f) the optical spectra of the Nyquist soliton optical frequency comb generated by various spectral filtering order.

    图 9  微腔光梳的噪声研究[59,83,84] (a) 微腔光梳合成微波的原理示意图, 连续激光在微腔中产生孤子脉冲, 随后将脉冲序列耦合到高速光电探测器上, 即可产生频率为光梳重频的微波信号, 这也是常用的光梳重频测量方法; (b)“安静点”操作抑制光梳噪声示意图, 在特定失谐下, 孤子重频对失谐变化敏感度最小, 相应光梳重频噪声最低; (c) 布里渊克尔孤子原理图, 泵浦激光先在微腔中激发布里渊激光, 再用布里渊激光泵浦微腔产生孤子光梳; (d) 注入锁定原理图, 泵浦激光通过电光调制器产生边带, 利用注入锁定效应将光梳梳齿锁定在调制产生的边带上

    Fig. 9.  Research on the noise of microcombs[59,83,84]: (a) Schematic diagram of synthesizing microwave signal using microcombs, a continuous laser generates soliton pulses within a microresonator, and this pulse sequence is subsequently coupled to a high-speed photodetector to generate microwave signals with a frequency equaling to the repetition rate of the microcombs, this process also serves as a conventional method for measuring the repetition rate of optical frequency combs; (b) schematic illustration of noise suppression in microcombs through "quiet point" operation, the microcomb's repetition rate exhibits minimal sensitivity to detuning under a specific detuning condition, which coincides with the microcomb state characterized by the lowest repetition rate noise; (c) schematic diagram of Brillouin Kerr soliton, the pump laser generates Brillouin laser in the microresonator, and then the Brillouin laser pump the microresonator to generate soliton comb; (d) schematic diagram of injection locking, the pump laser is modulated by electro-optic modulator to generate a pair of sidebands, the comb lines are locked to the modulated sidebands via injection locking effects.

    图 10  微腔光梳的应用[92100]. 微腔光梳被广泛应用于通信、微波合成、激光雷达、光谱学、光计算、光钟、光学频率合成、光学频率分频与量子光源等领域

    Fig. 10.  Applications of microcombs[92100]: Microcombs can be widely applied to communication, microwave synthesis, Lidar, spectroscopy, optical computing, optical-frequency synthesizer, optical frequency division, quantum light source, and other fields.

  • [1]

    Chebotayev V P, Goldort V G, Klementyev V M, et al. 1982 Appl. Phys. B 29 63Google Scholar

    [2]

    Schnatz H, Lipphardt B, Helmcke J, et al. 1996 Phys. Rev. Lett. 76 18Google Scholar

    [3]

    Diddams S A, Jones D J, Ye J, et al. 2000 Phys. Rev. Lett. 84 5102Google Scholar

    [4]

    Fortier T, Baumann E 2019 Commun. Phys. 2 153Google Scholar

    [5]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [6]

    Diddams S A, Vahala K, Udem T 2020 Science 369 eaay3676Google Scholar

    [7]

    Reichert J, Holzwarth R, Udem T, et al. 1999 Opt. Commun. 172 59Google Scholar

    [8]

    Udem T, Diddams S A, Vogel K R, et al. 2001 Phys. Rev. Lett. 86 4996Google Scholar

    [9]

    Holzwarth R, Udem T, Hänsch T W, et al. 2000 Phys. Rev. Lett. 85 2264Google Scholar

    [10]

    Holzwarth R, Nevsky A Y, Zimmermann M, et al. 2001 Appl. Phys. B 73 269Google Scholar

    [11]

    Stenger J, Schnatz H, Tamm C, et al. 2002 Phys. Rev. Lett. 88 073601Google Scholar

    [12]

    Rosenband T, Hume D B, Schmidt P O, et al. 2008 Science 319 1808Google Scholar

    [13]

    Godun R M, Nisbet-Jones P B R, Jones J M, et al. 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [14]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [15]

    Hänsch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [16]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42Google Scholar

    [17]

    Jones D J, Diddams S A, Ranka J K, et al. 2000 Science 288 635Google Scholar

    [18]

    Bartels A, Heinecke D, Diddams S A 2009 Science 326 681Google Scholar

    [19]

    Murata H, Morimoto A, Kobayashi T, et al. 2000 IEEE J. Sel. Top. Quant. 6 1325Google Scholar

    [20]

    Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics. 12 223Google Scholar

    [21]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [22]

    Kippenberg T J, Gaeta A L, Lipson M, et al. 2018 Science 361 6402

    [23]

    Herr T, Brasch V, Jost J D, et al. 2014 Nat. Photonics 8 145Google Scholar

    [24]

    Lao C, Jin X, Chang L, et al. 2023 Nat. Commun. 14 1802Google Scholar

    [25]

    Xue X, Xuan Y, Liu Y, et al. 2015 Nat. Photonics 9 594Google Scholar

    [26]

    Lobanov V E, Lihachev G, Kippenberg T J, et al. 2015 Opt. Express 23 7713Google Scholar

    [27]

    Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 083904Google Scholar

    [28]

    Savchenkov A A, Matsko A B, Strekalov D, et al. 2004 Phys. Rev. Lett. 93 243905Google Scholar

    [29]

    Del’Haye P, Schliesser A, Arcizet O, et al. 2007 Nature 450 1214Google Scholar

    [30]

    Herr T, Hartinger K, Riemensberger J, et al. 2012 Nat. Photonics 6 480Google Scholar

    [31]

    Carmon T, Yang L, Vahala K J 2004 Opt. Express 12 4742Google Scholar

    [32]

    Brasch V, Geiselmann M, Pfeiffer M H P, et al. 2016 Opt. Express 24 29312Google Scholar

    [33]

    Yi X, Yang Q F, Yang K Y, et al. 2016 Opt. Lett. 41 2037Google Scholar

    [34]

    Zhou H, Geng Y, Cui W, et al. 2019 Light-Sci. Appl. 8 50Google Scholar

    [35]

    Zhang S, Silver J M, Del Bino L, et al. 2019 Optica 6 206Google Scholar

    [36]

    Nishimoto K, Minoshima K, Yasui T, et al. 2022 Opt. Lett. 47 281Google Scholar

    [37]

    Zheng H, Sun W, Ding X, et al. 2023 arXiv: 2309.03586 [physics. optics

    [38]

    Joshi C, Jang J K, Luke K, et al. 2016 Opt. Lett. 41 2565Google Scholar

    [39]

    Xue X, Xuan Y, Wang C, et al. 2016 Opt. Express 24 687Google Scholar

    [40]

    Guo H, Karpov M, Lucas E, et al. 2017 Nat. Phys. 13 94Google Scholar

    [41]

    Shen B, Chang L, Liu J, et al. 2020 Nature 582 365Google Scholar

    [42]

    Voloshin A S, Kondratiev N M, Lihachev G V, et al. 2021 Nat. Commun. 12 235Google Scholar

    [43]

    Jin W, Yang Q F, Chang L, et al. 2021 Nat. Photonics 15 346Google Scholar

    [44]

    Lihachev G, Weng W, Liu J, et al. 2022 Nat. Commun. 13 1771Google Scholar

    [45]

    Brasch V, Geiselmann M, Herr T, et al. 2016 Science 351 357Google Scholar

    [46]

    Li Q, Briles T C, Westly D A, et al. 2017 Optica 4 193Google Scholar

    [47]

    Briles T C, Stone J R, Drake T E, et al. 2018 Opt. Lett. 43 2933Google Scholar

    [48]

    Yi X, Yang Q F, Yang K Y, et al. 2015 Optica 2 1078Google Scholar

    [49]

    Yao L, Liu P, Chen H J, et al. 2022 Optica 9 561Google Scholar

    [50]

    Lee H, Chen T, Li J, et al. 2012 Nat. Photonics 6 369Google Scholar

    [51]

    Yang K Y, Oh D Y, Lee S H, et al. 2018 Nat. Photonics 12 297Google Scholar

    [52]

    Yu M, Okawachi Y, Griffith A G, et al. 2016 Optica 3 854Google Scholar

    [53]

    Wang C, Fang Z, Yi A, et al. 2021 Light-Sci. Appl. 10 139Google Scholar

    [54]

    He Y, Yang Q F, Ling J, et al. 2019 Optica 6 1138Google Scholar

    [55]

    Wang C, Zhang M, Yu M, et al. 2019 Nat. Commun. 10 978Google Scholar

    [56]

    Gong Z, Bruch A, Shen M, et al. 2018 Opt. Lett. 43 4366Google Scholar

    [57]

    Pu M, Ottaviano L, Semenova E, et al. 2016 Optica 3 823Google Scholar

    [58]

    Chang L, Xie W, Shu H, et al. 2020 Nat. Commun. 11 1331Google Scholar

    [59]

    Weng W, Lucas E, Lihachev G, et al. 2019 Phys. Rev. Lett. 122 013902Google Scholar

    [60]

    Jung H, Yu S P, Carlson D R, et al. 2021 Optica 8 811Google Scholar

    [61]

    Shu H, Chang L, Lao C, et al. 2023 Adv. Photonics 5 036007Google Scholar

    [62]

    Stern B, Ji X, Okawachi Y, et al. 2018 Nature 562 401Google Scholar

    [63]

    Matsko A B, Liang W, Savchenkov A A, et al. 2016 Opt. Lett. 41 2907Google Scholar

    [64]

    Yi X, Yang Q F, Zhang X, et al. 2017 Nat. Commun. 8 14869Google Scholar

    [65]

    Yuan Z, Gao M, Yu Y, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [66]

    Anderson M H, Weng W, Lihachev G, et al. 2022 Nat. Commun. 13 4764Google Scholar

    [67]

    Moille G, Perez E F, Stone J R, et al. 2021 Nat. Commun. 12 7275Google Scholar

    [68]

    Chen H J, Ji Q X, Wang H, et al. 2020 Nat. Commun. 11 2336Google Scholar

    [69]

    Xue X, Wang P H, Xuan Y, et al. 2017 Laser Photonics Rev. 11 1600276Google Scholar

    [70]

    Obrzud E, Lecomte S, Herr T 2017 Nat. Photonics 11 600Google Scholar

    [71]

    Bao H, Cooper A, Rowley M, et al. 2019 Nat. Photonics 13 384Google Scholar

    [72]

    Xue X, Zheng X, Zhou B 2019 Nat. Photonics 13 616Google Scholar

    [73]

    Helgason Ó B, Girardi M, Ye Z, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [74]

    Coillet A, Balakireva I, Henriet R, et al. 2013 IEEE Photonics J. 5 6100409Google Scholar

    [75]

    Cole D C, Lamb E S, Del’Haye P, et al. 2017 Nat. Photonics 11 671Google Scholar

    [76]

    Karpov M, Pfeiffer M H P, Guo H, et al. 2019 Nat. Phys. 15 1071Google Scholar

    [77]

    Lu Z, Chen H J, Wang W, et al. 2021 Nat. Commun. 12 3179Google Scholar

    [78]

    Wang H, Shen B, Yu Y, et al. 2022 Phys. Rev. A 106 053508Google Scholar

    [79]

    Li J, Bao C, Ji Q X, et al. 2022 Optica 9 231Google Scholar

    [80]

    Lucas E, Yu S P, Briles T C, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [81]

    Xue X X, Grelu P, Yang B, et al. 2023 Light-Sci. Appl. 12 19Google Scholar

    [82]

    Wildi T, Gaafar M A, Voumard T, et al. 2023 Optica 10 650Google Scholar

    [83]

    Yang Q F, Ji Q X, Wu L, et al. 2021 Nat. Commun. 12 1442Google Scholar

    [84]

    Bai Y, Zhang M, Shi Q, et al. 2021 Phys. Rev. Lett. 126 063901Google Scholar

    [85]

    Gorodetsky M L, Grudinin I S 2004 JOSA B 21 697Google Scholar

    [86]

    Moille G, Lu X, Rao A, et al. 2019 Phys. Rev. Applied 12 034057Google Scholar

    [87]

    Huang G, Lucas E, Liu J, et al. 2019 Phys. Rev. A 99 061801Google Scholar

    [88]

    Drake T E, Stone J R, Briles T C, et al. 2020 Nat. Photonics 14 480Google Scholar

    [89]

    Matsko A B, Maleki L 2013 Opt. Express 21 28862Google Scholar

    [90]

    Bao C, Suh M G, Shen B, et al. 2021 Nat. Phys. 17 462Google Scholar

    [91]

    Jin X, Lv Z, Yang Q F 2023 arXiv: 2311.06463 [physics. optics

    [92]

    Marin-Palomo P, Kemal J N, Karpov M, et al. 2017 Nature 546 274Google Scholar

    [93]

    Suh M G, Yang Q F, Yang K Y, et al. 2016 Science 354 600Google Scholar

    [94]

    Feldmann J, Youngblood N, Karpov M, et al. 2021 Nature 589 52Google Scholar

    [95]

    Riemensberger J, Lukashchuk A, Karpov M, et al. 2020 Nature 581 164Google Scholar

    [96]

    Kues M, Reimer C, Roztocki P, et al. 2017 Nature 546 622Google Scholar

    [97]

    Liang W, Eliyahu D, Ilchenko V S, et al. 2015 Nat. Commun. 6 1

    [98]

    Tetsumoto T, Nagatsuma T, Fermann M E, et al. 2021 Nat. Photonics 15 516Google Scholar

    [99]

    Newman Z L, Maurice V, Drake T, et al. 2019 Optica 6 680Google Scholar

    [100]

    Spencer D T, Drake T, Briles T C, et al. 2018 Nature 557 81Google Scholar

    [101]

    Trocha P, Karpov M, Ganin D, et al. 2018 Science 359 887Google Scholar

    [102]

    Lukashchuk A, Riemensberger J, Tusnin A, et al. 2023 Nat. Photonics 17 814Google Scholar

    [103]

    Chen R, Shu H, Shen B, et al. 2023 Nat. Photonics 17 306Google Scholar

    [104]

    Yang Q F, Shen B, Wang H, et al. 2019 Science 363 965Google Scholar

    [105]

    Sun S, Wang B, Liu K, et al. 2023 arXiv: 2305.13575 [physics. optics

    [106]

    Kudelin I, Groman W, Ji Q X, et al. 2023 arXiv: 2307.08937 [physics. optics

    [107]

    Kues M, Reimer C, Lukens J M, et al. 2019 Nat. Photonics 13 170Google Scholar

    [108]

    Yang Z, Jahanbozorgi M, Jeong D, et al. 2021 Nat. Commun. 12 4781Google Scholar

    [109]

    Jahanbozorgi M, Yang Z, Sun S, et al. 2023 Optica 10 1100Google Scholar

  • [1] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案. 物理学报, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [3] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [4] 任波, 佘彦超, 徐小凤, 叶伏秋. 高阶效应下对称三量子点系统中光孤子稳定性研究. 物理学报, 2021, 70(22): 224205. doi: 10.7498/aps.70.20210942
    [5] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [6] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [7] 徐昕, 金雪莹, 高浩然, 程杰, 陆洋, 陈东, 于连栋. 耦合光学微腔的频率调谐过程分析. 物理学报, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [8] 廖小瑜, 曹俊诚, 黎华. 太赫兹半导体激光光频梳研究进展. 物理学报, 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [9] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [10] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [11] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [12] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模. 物理学报, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [13] 朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩. 基于飞秒光频梳的压电陶瓷闭环位移控制系统. 物理学报, 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [14] 张继涛, 吴学健, 李岩, 尉昊赟. 利用光频梳提高台阶高度测量准确度的方法. 物理学报, 2012, 61(10): 100601. doi: 10.7498/aps.61.100601
    [15] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量. 物理学报, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [16] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [17] 邓玉强, 王清月, 吴祖斌, 张志刚. 载波-包络相位对于基频光与其自身倍频光脉冲合成的影响. 物理学报, 2006, 55(2): 737-742. doi: 10.7498/aps.55.737
    [18] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [19] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子. 物理学报, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [20] 刘山亮. 空间光孤子脉冲在平面光波导中的传输. 物理学报, 2003, 52(11): 2825-2830. doi: 10.7498/aps.52.2825
计量
  • 文章访问数:  9033
  • PDF下载量:  575
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2023-12-01
  • 上网日期:  2023-12-04
  • 刊出日期:  2023-12-05

/

返回文章
返回